How to Detect ArUco Markers Using OpenCV and Python

In this tutorial, I will show you how to detect an ArUco Marker in a real-time video stream (i.e. my webcam) using OpenCV (Python). I will follow this tutorial

By the end of this tutorial, you will be able to generate output like this:

detect-aruco-marker

Prerequisites

Create the Code

Open your favorite code editor, and write the following code. I will name my program detect_aruco_marker.py. This program detects an ArUco marker in a real-time video stream (we’ll use the built-in webcam).

#!/usr/bin/env python
 
'''
Welcome to the ArUco Marker Detector!
 
This program:
  - Detects ArUco markers using OpenCV and Python
'''
 
from __future__ import print_function # Python 2/3 compatibility
import cv2 # Import the OpenCV library
import numpy as np # Import Numpy library

# Project: ArUco Marker Detector
# Date created: 12/18/2021
# Python version: 3.8
# Reference: https://www.pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opencv-and-python/

desired_aruco_dictionary = "DICT_ARUCO_ORIGINAL"

# The different ArUco dictionaries built into the OpenCV library. 
ARUCO_DICT = {
  "DICT_4X4_50": cv2.aruco.DICT_4X4_50,
  "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
  "DICT_4X4_250": cv2.aruco.DICT_4X4_250,
  "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
  "DICT_5X5_50": cv2.aruco.DICT_5X5_50,
  "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
  "DICT_5X5_250": cv2.aruco.DICT_5X5_250,
  "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
  "DICT_6X6_50": cv2.aruco.DICT_6X6_50,
  "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
  "DICT_6X6_250": cv2.aruco.DICT_6X6_250,
  "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
  "DICT_7X7_50": cv2.aruco.DICT_7X7_50,
  "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
  "DICT_7X7_250": cv2.aruco.DICT_7X7_250,
  "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
  "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL
}
 
def main():
  """
  Main method of the program.
  """
  # Check that we have a valid ArUco marker
  if ARUCO_DICT.get(desired_aruco_dictionary, None) is None:
    print("[INFO] ArUCo tag of '{}' is not supported".format(
      args["type"]))
    sys.exit(0)
    
  # Load the ArUco dictionary
  print("[INFO] detecting '{}' markers...".format(
	desired_aruco_dictionary))
  this_aruco_dictionary = cv2.aruco.Dictionary_get(ARUCO_DICT[desired_aruco_dictionary])
  this_aruco_parameters = cv2.aruco.DetectorParameters_create()
  
  # Start the video stream
  cap = cv2.VideoCapture(0)
  
  while(True):
 
    # Capture frame-by-frame
    # This method returns True/False as well
    # as the video frame.
    ret, frame = cap.read()  
    
    # Detect ArUco markers in the video frame
    (corners, ids, rejected) = cv2.aruco.detectMarkers(
      frame, this_aruco_dictionary, parameters=this_aruco_parameters)
      
    # Check that at least one ArUco marker was detected
    if len(corners) > 0:
      # Flatten the ArUco IDs list
      ids = ids.flatten()
      
      # Loop over the detected ArUco corners
      for (marker_corner, marker_id) in zip(corners, ids):
      
        # Extract the marker corners
        corners = marker_corner.reshape((4, 2))
        (top_left, top_right, bottom_right, bottom_left) = corners
        
        # Convert the (x,y) coordinate pairs to integers
        top_right = (int(top_right[0]), int(top_right[1]))
        bottom_right = (int(bottom_right[0]), int(bottom_right[1]))
        bottom_left = (int(bottom_left[0]), int(bottom_left[1]))
        top_left = (int(top_left[0]), int(top_left[1]))
        
        # Draw the bounding box of the ArUco detection
        cv2.line(frame, top_left, top_right, (0, 255, 0), 2)
        cv2.line(frame, top_right, bottom_right, (0, 255, 0), 2)
        cv2.line(frame, bottom_right, bottom_left, (0, 255, 0), 2)
        cv2.line(frame, bottom_left, top_left, (0, 255, 0), 2)
        
        # Calculate and draw the center of the ArUco marker
        center_x = int((top_left[0] + bottom_right[0]) / 2.0)
        center_y = int((top_left[1] + bottom_right[1]) / 2.0)
        cv2.circle(frame, (center_x, center_y), 4, (0, 0, 255), -1)
        
        # Draw the ArUco marker ID on the video frame
        # The ID is always located at the top_left of the ArUco marker
        cv2.putText(frame, str(marker_id), 
          (top_left[0], top_left[1] - 15),
          cv2.FONT_HERSHEY_SIMPLEX,
          0.5, (0, 255, 0), 2)
 
    # Display the resulting frame
    cv2.imshow('frame',frame)
         
    # If "q" is pressed on the keyboard, 
    # exit this loop
    if cv2.waitKey(1) & 0xFF == ord('q'):
      break
 
  # Close down the video stream
  cap.release()
  cv2.destroyAllWindows()
  
if __name__ == '__main__':
  print(__doc__)
  main()

Save the file, and close it.

You need to have opencv-contrib-python installed and not opencv-python. Open a terminal window, and type:

pip uninstall opencv-python
pip3 install opencv-contrib-python==4.6.0.66

To run the program in Linux for example, type the following command:

python3 detect_aruco_marker.py
detect_aruco_marker-1

If you want to restore OpenCV to the previous version after you’re finished creating the ArUco markers, type:

pip uninstall opencv-contrib-python
pip install opencv-python

To set the changes, I recommend rebooting your computer.

That’s it. Keep building!

Auto-docking to Recharge Battery – ArUco Marker and ROS 2

In this tutorial, I will show you have to perform auto-docking for a mobile robot using ROS 2, OpenCV, and an ArUco marker. Here is the output you will be able to generate if you follow this tutorial to the end:

navigate-to-charging-dock-aruco-marker

Prerequisites

You can find the code for this post here on GitHub.

Version 1 – Harcode the ArUco Marker Pose

Create the Base Link to ArUco Marker Transform

Create a new transformation file between the base_link to aruco_marker.

cd ~/dev_ws/src/two_wheeled_robot/scripts/transforms/base_link_aruco_marker
gedit base_link_to_aruco_marker_transform.py

Add this code.

Save the file, and close it.

Change the execution permissions.

chmod +x base_link_to_aruco_marker_transform.py

Add the script to your CMakeLists.txt file.

Create a launch file.

cd ~/dev_ws/src/two_wheeled_robot/launch/hospital_world/
gedit hospital_world_connect_to_charging_dock_v5.launch.py

Add this code.

Save and close the file.

Create the Navigation to Charging Dock Script

Add a new navigate-to-charging-dock script. We will call it navigate_to_charging_dock_v3.py.

cd ~/dev_ws/src/two_wheeled_robot/scripts
gedit navigate_to_charging_dock_v3.py

Add this code.

Save the file, and close it.

Change the execution permissions.

chmod +x navigate_to_charging_dock_v3.py

Create Battery Status Publishers to Simulate the Robot’s Battery

Now let’s add a full battery publisher. This publisher indicates the battery has sufficient voltage for navigation in an environment.

gedit full_battery_pub.py
#!/usr/bin/env python3 

"""
Description:
Publish the battery state at a specific time interval
In this case, the battery is a full battery.
-------
Publishing Topics:
/battery_status – sensor_msgs/BatteryState
-------
Subscription Topics:
None
-------
Author: Addison Sears-Collins
Website: AutomaticAddison.com
Date: January 13, 2022
"""
 
import rclpy # Import the ROS client library for Python
from rclpy.node import Node # Enables the use of rclpy's Node class
from sensor_msgs.msg import BatteryState # Enable use of the sensor_msgs/BatteryState message type
 
class BatteryStatePublisher(Node):
  """
  Create a BatteryStatePublisher class, which is a subclass of the Node class.
  The class publishes the battery state of an object at a specific time interval.
  """
  
  def __init__(self):
    """
    Class constructor to set up the node
    """
   
    # Initiate the Node class's constructor and give it a name
    super().__init__('battery_state_pub')
     
    # Create publisher(s)  
     
    # This node publishes the state of the battery.
    # Maximum queue size of 10. 
    self.publisher_battery_state = self.create_publisher(BatteryState, '/battery_status', 10)
     
    # Time interval in seconds
    timer_period = 0.1 
    self.timer = self.create_timer(timer_period, self.get_battery_state)
    
    # Initialize battery level
    self.voltage = 9.0 # Initialize the battery voltage level
    self.percentage = 1.0  # Initialize the percentage charge level
    self.power_supply_status = 3 # Initialize the power supply status (e.g. NOT CHARGING)
     
  def get_battery_state(self):
    """
    Callback function.
    This function reports the battery state at the specific time interval.
    """
    msg = BatteryState() # Create a message of this type 
    msg.voltage = self.voltage
    msg.percentage = self.percentage
    msg.power_supply_status = self.power_supply_status
    self.publisher_battery_state.publish(msg) # Publish BatteryState message 
   
def main(args=None):
 
  # Initialize the rclpy library
  rclpy.init(args=args)
 
  # Create the node
  battery_state_pub = BatteryStatePublisher()
 
  # Spin the node so the callback function is called.
  # Publish any pending messages to the topics.
  rclpy.spin(battery_state_pub)
 
  # Destroy the node explicitly
  # (optional - otherwise it will be done automatically
  # when the garbage collector destroys the node object)
  battery_state_pub.destroy_node()
 
  # Shutdown the ROS client library for Python
  rclpy.shutdown()
 
if __name__ == '__main__':
  main()

Now let’s add a low battery publisher. This publisher indicates the battery is low.

cd ~/dev_ws/src/two_wheeled_robot/scripts/battery_state
gedit low_battery_pub.py

Here is the code.

Now let’s add a charging battery publisher. This publisher indicates the battery is CHARGING (i.e. connected to the docking station).

cd ~/dev_ws/src/two_wheeled_robot/scripts/battery_state
gedit charging_battery_pub.py

Here is the code.

Don’t forget to update CMakeLists.txt with these new scripts.

Launch the Robot 

Open a new terminal window, and run the following node to indicate the battery is at full charge. 

ros2 run two_wheeled_robot full_battery_pub.py

Open a new terminal and launch the robot.

ros2 launch two_wheeled_robot hospital_world_connect_to_charging_dock_v5.launch.py

Select the Nav2 Goal button at the top of RViz and click somewhere on the map to command the robot to navigate to any reachable goal location.

The robot will move to the goal location.

While the robot is moving, stop the full_battery_pub.py node.

CTRL + C

Now run this command to indicate low battery:

ros2 run two_wheeled_robot low_battery_pub.py

The robot will plan a path to the staging area and then move along that path.

Once the robot reaches the staging area, the robot will navigate to the charging dock (i.e. ArUco marker) using the algorithm we developed earlier in this post. We assume the charging dock is located against a wall.

The algorithm (navigate_to_charging_dock_v3.py) works in four stages:

  1. Navigate to a staging area near the docking station once the battery gets below a certain level. 
  2. Navigate to an imaginary line that is perpendicular to the face of the ArUco marker.
  3. Face the direction of the ArUco marker.
  4. Move straight towards the ArUco marker, making small heading adjustments along the way.

This script uses the static transform publisher for the ArUco marker. In other words, it assumes we have hardcoded the position and orientation of the ArUco marker ahead of time. 

Once the robot has reached the charging dock, press CTRL + C to stop the low_battery_pub.py node, and type:

ros2 run two_wheeled_robot charging_battery_pub.py

That 1 for the power_supply_status indicates the battery is CHARGING.

Version 2: Do Not Hardcode the ArUco Marker Pose

Let’s create another navigation-to-charging dock script. In this script, we assume we have not hardcoded the exact pose of the ArUco marker ahead of time. The algorithm (navigate_to_charging_dock_v4.py) works in four stages:

  1. Navigate to a staging area near the docking station once the battery gets below a certain level. This staging area is 1.5 meters in front of the docking station.
  2. Rotate around to search for the ArUco marker using the robot’s camera.
  3. Once the ArUco marker is detected, move towards it, making minor heading adjustments as necessary.
  4. Stop once the robot gets close enough (<0.22 meters from the LIDAR) to the charging dock (or starts charging).
  5. Undock once the robot gets to a full charge.
  6. Wait for the next navigation goal.

We assume the charging dock is located against a wall.

Create an ArUco Marker Centroid Offset Publisher and an ArUco Marker Detector Boolean Publisher

Let’s create a script that will detect an ArUco marker and publish the ArUco marker’s centroid offset (along the horizontal axis of the camera image).

Go into the scripts section of your package.

cd ~/dev_ws/src/two_wheeled_robot/scripts
gedit aruco_marker_detector.py

Add this code.

#!/usr/bin/env python3 

# Detect an ArUco marker and publish the ArUco marker's centroid offset.
# The marker's centroid offset is along the horizontal axis of the camera image.
# Author:
# - Addison Sears-Collins
# - https://automaticaddison.com
  
# Import the necessary ROS 2 libraries
import rclpy # Python library for ROS 2
from rclpy.node import Node # Handles the creation of nodes
from rclpy.qos import qos_profile_sensor_data # Uses Best Effort reliability for camera
from cv_bridge import CvBridge # Package to convert between ROS and OpenCV Images
from geometry_msgs.msg import TransformStamped # Handles TransformStamped message
from sensor_msgs.msg import Image # Image is the message type
from std_msgs.msg import Bool # Handles boolean messages
from std_msgs.msg import Int32 # Handles int 32 type message

# Import Python libraries
import cv2 # OpenCV library
import numpy as np # Import Numpy library

# The different ArUco dictionaries built into the OpenCV library. 
ARUCO_DICT = {
  "DICT_4X4_50": cv2.aruco.DICT_4X4_50,
  "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
  "DICT_4X4_250": cv2.aruco.DICT_4X4_250,
  "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
  "DICT_5X5_50": cv2.aruco.DICT_5X5_50,
  "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
  "DICT_5X5_250": cv2.aruco.DICT_5X5_250,
  "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
  "DICT_6X6_50": cv2.aruco.DICT_6X6_50,
  "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
  "DICT_6X6_250": cv2.aruco.DICT_6X6_250,
  "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
  "DICT_7X7_50": cv2.aruco.DICT_7X7_50,
  "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
  "DICT_7X7_250": cv2.aruco.DICT_7X7_250,
  "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
  "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL
}

class ArucoNode(Node):
  """
  Create an ArucoNode class, which is a subclass of the Node class.
  """
  def __init__(self):
    """
    Class constructor to set up the node
    """
    # Initiate the Node class's constructor and give it a name
    super().__init__('aruco_node')

    # Declare parameters
    self.declare_parameter("aruco_dictionary_name", "DICT_ARUCO_ORIGINAL")
    self.declare_parameter("aruco_marker_side_length", 0.05)
    self.declare_parameter("camera_calibration_parameters_filename", "/home/focalfossa/dev_ws/src/two_wheeled_robot/scripts/calibration_chessboard.yaml")
    self.declare_parameter("image_topic", "/depth_camera/image_raw")
    self.declare_parameter("aruco_marker_name", "aruco_marker")
    
    # Read parameters
    aruco_dictionary_name = self.get_parameter("aruco_dictionary_name").get_parameter_value().string_value
    self.aruco_marker_side_length = self.get_parameter("aruco_marker_side_length").get_parameter_value().double_value
    self.camera_calibration_parameters_filename = self.get_parameter(
      "camera_calibration_parameters_filename").get_parameter_value().string_value
    image_topic = self.get_parameter("image_topic").get_parameter_value().string_value
    self.aruco_marker_name = self.get_parameter("aruco_marker_name").get_parameter_value().string_value

    # Check that we have a valid ArUco marker
    if ARUCO_DICT.get(aruco_dictionary_name, None) is None:
      self.get_logger().info("[INFO] ArUCo tag of '{}' is not supported".format(
        args["type"]))
        
    # Load the camera parameters from the saved file
    cv_file = cv2.FileStorage(
      self.camera_calibration_parameters_filename, cv2.FILE_STORAGE_READ) 
    self.mtx = cv_file.getNode('K').mat()
    self.dst = cv_file.getNode('D').mat()
    cv_file.release()
    
    # Load the ArUco dictionary
    self.get_logger().info("[INFO] detecting '{}' markers...".format(
  	  aruco_dictionary_name))
    self.this_aruco_dictionary = cv2.aruco.Dictionary_get(ARUCO_DICT[aruco_dictionary_name])
    self.this_aruco_parameters = cv2.aruco.DetectorParameters_create()
    
    # Create the subscriber. This subscriber will receive an Image
    # from the image_topic. 
    self.subscription = self.create_subscription(
      Image, 
      image_topic, 
      self.listener_callback, 
      qos_profile=qos_profile_sensor_data)
    self.subscription # prevent unused variable warning
    
    # Create the publishers
    # Publishes if an ArUco marker was detected
    self.publisher_aruco_marker_detected = self.create_publisher(Bool, 'aruco_marker_detected', 10)
    
    # Publishes x-centroid offset with respect to the camera image
    self.publisher_offset_aruco_marker = self.create_publisher(Int32, 'aruco_marker_offset', 10)
    self.offset_aruco_marker = 0
      
    # Used to convert between ROS and OpenCV images
    self.bridge = CvBridge()
   
  def listener_callback(self, data):
    """
    Callback function.
    """
    # Convert ROS Image message to OpenCV image
    current_frame = self.bridge.imgmsg_to_cv2(data)
    
    # Detect ArUco markers in the video frame
    (corners, marker_ids, rejected) = cv2.aruco.detectMarkers(
      current_frame, self.this_aruco_dictionary, parameters=self.this_aruco_parameters,
      cameraMatrix=self.mtx, distCoeff=self.dst)
    
    # ArUco detected (True or False)
    aruco_detected_flag = Bool()
    aruco_detected_flag.data = False
    
    # ArUco center offset
    aruco_center_offset_msg = Int32()
    aruco_center_offset_msg.data = self.offset_aruco_marker
    
    image_width = current_frame.shape[1]

    # Check that at least one ArUco marker was detected
    if marker_ids is not None:
    
      # ArUco marker has been detected
      aruco_detected_flag.data = True
    
      # Draw a square around detected markers in the video frame
      cv2.aruco.drawDetectedMarkers(current_frame, corners, marker_ids)

      # Update the ArUco marker offset 
      M = cv2.moments(corners[0][0])
      cX = int(M["m10"] / M["m00"])
      cY = int(M["m01"] / M["m00"])
      
      self.offset_aruco_marker = cX - int(image_width/2)
      aruco_center_offset_msg.data = self.offset_aruco_marker

      cv2.putText(current_frame, "Center Offset: " + str(self.offset_aruco_marker), (cX - 40, cY - 40), 
        cv2.FONT_HERSHEY_COMPLEX, 0.7, (0, 255, 0), 2) 

    # Publish if ArUco marker has been detected or not
    self.publisher_aruco_marker_detected.publish(aruco_detected_flag)
    
    # Publish the center offset of the ArUco marker
    self.publisher_offset_aruco_marker.publish(aruco_center_offset_msg)
        
    # Display image for testing
    cv2.imshow("camera", current_frame)
    cv2.waitKey(1)
  
def main(args=None):
  
  # Initialize the rclpy library
  rclpy.init(args=args)
  
  # Create the node
  aruco_node = ArucoNode()
  
  # Spin the node so the callback function is called.
  rclpy.spin(aruco_node)
  
  # Destroy the node explicitly
  # (optional - otherwise it will be done automatically
  # when the garbage collector destroys the node object)
  aruco_node.destroy_node()
  
  # Shutdown the ROS client library for Python
  rclpy.shutdown()
  
if __name__ == '__main__':
  main()

Save the script and close.

Add execution permissions.

chmod +x aruco_marker_detector.py

Add the file to your CMakeLists.txt.

Create the Navigation Script

Go into the scripts section of your package.

cd ~/dev_ws/src/two_wheeled_robot/scripts
gedit navigate_to_charging_dock_v4.py

Add this code.

Save the script and close.

Add execution permissions.

chmod +x navigate_to_charging_dock_v4.py

Add the file to your CMakeLists.txt.

Create the Launch File

cd ~/dev_ws/src/two_wheeled_robot/launch/hospital_world/
gedit hospital_world_connect_to_charging_dock_v6.launch.py

Add this code.

Save and close the file.

Launch the Robot 

Open a new terminal window, and run the following node to indicate the battery is at full charge. 

ros2 run two_wheeled_robot full_battery_pub.py

Open a new terminal and launch the robot.

ros2 launch two_wheeled_robot hospital_world_connect_to_charging_dock_v6.launch.py

Select the Nav2 Goal button at the top of RViz and click somewhere on the map to command the robot to navigate to any reachable goal location.

The robot will move to the goal location.

While the robot is moving, stop the full_battery_pub.py node.

CTRL + C

Now run this command to indicate low battery:

ros2 run two_wheeled_robot low_battery_pub.py

The robot will plan a path to the staging area and then move along that path.

Once the robot reaches the staging area, the robot will navigate to the charging dock (i.e. ArUco marker) using the algorithm we developed earlier in this post. We assume the charging dock is located against a wall.

1-navigating-to-charging-dock
2-navigating-to-charging-dock-1

Once the robot has reached the charging dock, press CTRL + C to stop the low_battery_pub.py node, and type:

ros2 run two_wheeled_robot charging_battery_pub.py

That 1 for the power_supply_status indicates the battery is CHARGING.

You can now simulate the robot reaching full charge by typing:

ros2 run two_wheeled_robot full_battery_pub.py

The robot will undock from the docking station.

You can then give the robot a new goal using the RViz Nav2 Goal button, and repeat the entire process again.

The Importance of Having a Rear Camera

In a humanoid robotic application, you can alter the algorithm so the robot backs into the charging dock. This assumes that you have a camera on the rear of the robot. You can see an implementation like this on this YouTube video.

The benefit of the robot backing into the charging dock is the robot is ready to navigate when it receives a goal….no backing up needed.

You can also add magnetic charging contacts like on this Youtube video to facilitate the connection.

That’s it! Keep building!

Estimate ArUco Marker Pose Using OpenCV, Gazebo, and ROS 2

In this tutorial, I will show you how to estimate the ArUco marker pose using ROS 2, OpenCV, and Gazebo. 

Here is the output you will be able to generate by completing this tutorial:

aruco-marker-pose-gazebo-ros2-opencv

Prerequisites

You can find the code for this post here on GitHub.

Directions

Make sure you have the calibration_chessboard.yaml file inside the following folder. This file contains the parameters for the camera.

~/dev_ws/src/two_wheeled_robot/scripts/

Inside this folder, make sure you have the aruco_marker_pose_estimation_tf.py script.

#!/usr/bin/env python3 

# Publishes a coordinate transformation between an ArUco marker and a camera
# Author:
# - Addison Sears-Collins
# - https://automaticaddison.com
  
# Import the necessary ROS 2 libraries
import rclpy # Python library for ROS 2
from rclpy.node import Node # Handles the creation of nodes
from rclpy.qos import qos_profile_sensor_data # Uses Best Effort reliability for camera
from cv_bridge import CvBridge # Package to convert between ROS and OpenCV Images
from geometry_msgs.msg import TransformStamped # Handles TransformStamped message
from sensor_msgs.msg import Image # Image is the message type
from tf2_ros import TransformBroadcaster

# Import Python libraries
import cv2 # OpenCV library
import numpy as np # Import Numpy library
from scipy.spatial.transform import Rotation as R

# The different ArUco dictionaries built into the OpenCV library. 
ARUCO_DICT = {
  "DICT_4X4_50": cv2.aruco.DICT_4X4_50,
  "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
  "DICT_4X4_250": cv2.aruco.DICT_4X4_250,
  "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
  "DICT_5X5_50": cv2.aruco.DICT_5X5_50,
  "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
  "DICT_5X5_250": cv2.aruco.DICT_5X5_250,
  "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
  "DICT_6X6_50": cv2.aruco.DICT_6X6_50,
  "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
  "DICT_6X6_250": cv2.aruco.DICT_6X6_250,
  "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
  "DICT_7X7_50": cv2.aruco.DICT_7X7_50,
  "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
  "DICT_7X7_250": cv2.aruco.DICT_7X7_250,
  "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
  "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL
}

class ArucoNode(Node):
  """
  Create an ArucoNode class, which is a subclass of the Node class.
  """
  def __init__(self):
    """
    Class constructor to set up the node
    """
    # Initiate the Node class's constructor and give it a name
    super().__init__('aruco_node')

    # Declare parameters
    self.declare_parameter("aruco_dictionary_name", "DICT_ARUCO_ORIGINAL")
    self.declare_parameter("aruco_marker_side_length", 0.05)
    self.declare_parameter("camera_calibration_parameters_filename", "/home/focalfossa/dev_ws/src/two_wheeled_robot/scripts/calibration_chessboard.yaml")
    self.declare_parameter("image_topic", "/depth_camera/image_raw")
    self.declare_parameter("aruco_marker_name", "aruco_marker")
    
    # Read parameters
    aruco_dictionary_name = self.get_parameter("aruco_dictionary_name").get_parameter_value().string_value
    self.aruco_marker_side_length = self.get_parameter("aruco_marker_side_length").get_parameter_value().double_value
    self.camera_calibration_parameters_filename = self.get_parameter(
      "camera_calibration_parameters_filename").get_parameter_value().string_value
    image_topic = self.get_parameter("image_topic").get_parameter_value().string_value
    self.aruco_marker_name = self.get_parameter("aruco_marker_name").get_parameter_value().string_value

    # Check that we have a valid ArUco marker
    if ARUCO_DICT.get(aruco_dictionary_name, None) is None:
      self.get_logger().info("[INFO] ArUCo tag of '{}' is not supported".format(
        args["type"]))
        
    # Load the camera parameters from the saved file
    cv_file = cv2.FileStorage(
      self.camera_calibration_parameters_filename, cv2.FILE_STORAGE_READ) 
    self.mtx = cv_file.getNode('K').mat()
    self.dst = cv_file.getNode('D').mat()
    cv_file.release()
    
    # Load the ArUco dictionary
    self.get_logger().info("[INFO] detecting '{}' markers...".format(
  	  aruco_dictionary_name))
    self.this_aruco_dictionary = cv2.aruco.Dictionary_get(ARUCO_DICT[aruco_dictionary_name])
    self.this_aruco_parameters = cv2.aruco.DetectorParameters_create()
    
    # Create the subscriber. This subscriber will receive an Image
    # from the image_topic. 
    self.subscription = self.create_subscription(
      Image, 
      image_topic, 
      self.listener_callback, 
      qos_profile=qos_profile_sensor_data)
    self.subscription # prevent unused variable warning
    
    # Initialize the transform broadcaster
    self.tfbroadcaster = TransformBroadcaster(self)
      
    # Used to convert between ROS and OpenCV images
    self.bridge = CvBridge()
   
  def listener_callback(self, data):
    """
    Callback function.
    """
    # Display the message on the console
    self.get_logger().info('Receiving video frame')
 
    # Convert ROS Image message to OpenCV image
    current_frame = self.bridge.imgmsg_to_cv2(data)
    
    # Detect ArUco markers in the video frame
    (corners, marker_ids, rejected) = cv2.aruco.detectMarkers(
      current_frame, self.this_aruco_dictionary, parameters=self.this_aruco_parameters,
      cameraMatrix=self.mtx, distCoeff=self.dst)

    # Check that at least one ArUco marker was detected
    if marker_ids is not None:
    
      # Draw a square around detected markers in the video frame
      cv2.aruco.drawDetectedMarkers(current_frame, corners, marker_ids)

      # Get the rotation and translation vectors
      rvecs, tvecs, obj_points = cv2.aruco.estimatePoseSingleMarkers(
        corners,
        self.aruco_marker_side_length,
        self.mtx,
        self.dst)
        
      # The pose of the marker is with respect to the camera lens frame.
      # Imagine you are looking through the camera viewfinder, 
      # the camera lens frame's:
      # x-axis points to the right
      # y-axis points straight down towards your toes
      # z-axis points straight ahead away from your eye, out of the camera
      for i, marker_id in enumerate(marker_ids):  

        # Create the coordinate transform
        t = TransformStamped()
        t.header.stamp = self.get_clock().now().to_msg()
        t.header.frame_id = 'camera_depth_frame'
        t.child_frame_id = self.aruco_marker_name
      
        # Store the translation (i.e. position) information
        t.transform.translation.x = tvecs[i][0][0]
        t.transform.translation.y = tvecs[i][0][1]
        t.transform.translation.z = tvecs[i][0][2]

        # Store the rotation information
        rotation_matrix = np.eye(4)
        rotation_matrix[0:3, 0:3] = cv2.Rodrigues(np.array(rvecs[i][0]))[0]
        r = R.from_matrix(rotation_matrix[0:3, 0:3])
        quat = r.as_quat()   
        
        # Quaternion format     
        t.transform.rotation.x = quat[0] 
        t.transform.rotation.y = quat[1] 
        t.transform.rotation.z = quat[2] 
        t.transform.rotation.w = quat[3] 

        # Send the transform
        self.tfbroadcaster.sendTransform(t)    
                  
        # Draw the axes on the marker
        cv2.aruco.drawAxis(current_frame, self.mtx, self.dst, rvecs[i], tvecs[i], 0.05)        
              
    # Display image for testing
    cv2.imshow("camera", current_frame)
    cv2.waitKey(1)
  
def main(args=None):
  
  # Initialize the rclpy library
  rclpy.init(args=args)
  
  # Create the node
  aruco_node = ArucoNode()
  
  # Spin the node so the callback function is called.
  rclpy.spin(aruco_node)
  
  # Destroy the node explicitly
  # (optional - otherwise it will be done automatically
  # when the garbage collector destroys the node object)
  aruco_node.destroy_node()
  
  # Shutdown the ROS client library for Python
  rclpy.shutdown()
  
if __name__ == '__main__':
  main()

Make sure you enable it to execute.

cd ~/dev_ws/src/two_wheeled_robot/scripts/
chmod +x aruco_marker_pose_estimation_tf.py

Update the package.xml file with the necessary package dependencies.

Create a launch file.

cd ~/dev_ws/src/two_wheeled_robot/launch/hospital_world/
gedit hospital_world_connect_to_charging_dock_v4.launch.py
# Author: Addison Sears-Collins
# Date: January 10, 2022
# Description: Launch a two-wheeled robot using the ROS 2 Navigation Stack. 
#              The spawning of the robot is performed by the Gazebo-ROS spawn_entity node.
#              The robot must be in both SDF and URDF format.
#              If you want to spawn the robot in a pose other than the default, be sure to set that inside
#              the nav2_params_path yaml file: amcl ---> initial_pose: [x, y, z, yaw]
#              The robot will return to the charging dock when the /battery_status percentage is low.
# https://automaticaddison.com

import os
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument, IncludeLaunchDescription
from launch.conditions import IfCondition, UnlessCondition
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import Command, LaunchConfiguration, PythonExpression
from launch_ros.actions import Node
from launch_ros.substitutions import FindPackageShare

def generate_launch_description():
  package_name = 'two_wheeled_robot'
  robot_name_in_model = 'two_wheeled_robot'
  default_launch_dir = 'launch'
  gazebo_models_path = 'models'
  map_file_path = 'maps/hospital_world/hospital_world.yaml'
  nav2_params_path = 'params/hospital_world/nav2_connect_to_charging_dock_params.yaml'
  robot_localization_file_path = 'config/ekf.yaml'
  rviz_config_file_path = 'rviz/hospital_world/nav2_config_with_depth_camera.rviz'
  sdf_model_path = 'models/two_wheeled_robot_with_camera_description/model.sdf'
  urdf_file_path = 'urdf/two_wheeled_robot_with_camera.urdf'
  world_file_path = 'worlds/hospital.world'
  nav_to_charging_dock_script = 'navigate_to_charging_dock_v2.py'
  
  # Pose where we want to spawn the robot
  spawn_x_val = '0.0'
  spawn_y_val = '2.0'
  spawn_z_val = '0.25'
  spawn_yaw_val = '0.0'

  ########## You do not need to change anything below this line ###############
  
  # Set the path to different files and folders.  
  pkg_gazebo_ros = FindPackageShare(package='gazebo_ros').find('gazebo_ros')   
  pkg_share = FindPackageShare(package=package_name).find(package_name)
  default_launch_dir = os.path.join(pkg_share, default_launch_dir)
  default_urdf_model_path = os.path.join(pkg_share, urdf_file_path)
  robot_localization_file_path = os.path.join(pkg_share, robot_localization_file_path) 
  default_rviz_config_path = os.path.join(pkg_share, rviz_config_file_path)
  world_path = os.path.join(pkg_share, world_file_path)
  gazebo_models_path = os.path.join(pkg_share, gazebo_models_path)
  os.environ["GAZEBO_MODEL_PATH"] = gazebo_models_path
  nav2_dir = FindPackageShare(package='nav2_bringup').find('nav2_bringup') 
  nav2_launch_dir = os.path.join(nav2_dir, 'launch') 
  sdf_model_path = os.path.join(pkg_share, sdf_model_path)
  static_map_path = os.path.join(pkg_share, map_file_path)
  nav2_params_path = os.path.join(pkg_share, nav2_params_path)
  nav2_bt_path = FindPackageShare(package='nav2_bt_navigator').find('nav2_bt_navigator')
  
  # Launch configuration variables specific to simulation
  autostart = LaunchConfiguration('autostart')
  headless = LaunchConfiguration('headless')
  map_yaml_file = LaunchConfiguration('map')
  namespace = LaunchConfiguration('namespace')
  params_file = LaunchConfiguration('params_file')
  rviz_config_file = LaunchConfiguration('rviz_config_file')
  sdf_model = LaunchConfiguration('sdf_model')
  slam = LaunchConfiguration('slam')
  urdf_model = LaunchConfiguration('urdf_model')
  use_namespace = LaunchConfiguration('use_namespace')
  use_robot_state_pub = LaunchConfiguration('use_robot_state_pub')
  use_rviz = LaunchConfiguration('use_rviz')
  use_sim_time = LaunchConfiguration('use_sim_time')
  use_simulator = LaunchConfiguration('use_simulator')
  world = LaunchConfiguration('world')
  
  # Map fully qualified names to relative ones so the node's namespace can be prepended.
  # In case of the transforms (tf), currently, there doesn't seem to be a better alternative
  # https://github.com/ros/geometry2/issues/32
  # https://github.com/ros/robot_state_publisher/pull/30
  # TODO(orduno) Substitute with `PushNodeRemapping`
  #              https://github.com/ros2/launch_ros/issues/56
  remappings = [('/tf', 'tf'),
                ('/tf_static', 'tf_static')]
  
  # Declare the launch arguments  
  declare_namespace_cmd = DeclareLaunchArgument(
    name='namespace',
    default_value='',
    description='Top-level namespace')

  declare_use_namespace_cmd = DeclareLaunchArgument(
    name='use_namespace',
    default_value='false',
    description='Whether to apply a namespace to the navigation stack')
        
  declare_autostart_cmd = DeclareLaunchArgument(
    name='autostart', 
    default_value='true',
    description='Automatically startup the nav2 stack')

  declare_map_yaml_cmd = DeclareLaunchArgument(
    name='map',
    default_value=static_map_path,
    description='Full path to map file to load')
        
  declare_params_file_cmd = DeclareLaunchArgument(
    name='params_file',
    default_value=nav2_params_path,
    description='Full path to the ROS2 parameters file to use for all launched nodes')
    
  declare_rviz_config_file_cmd = DeclareLaunchArgument(
    name='rviz_config_file',
    default_value=default_rviz_config_path,
    description='Full path to the RVIZ config file to use')

  declare_sdf_model_path_cmd = DeclareLaunchArgument(
    name='sdf_model', 
    default_value=sdf_model_path, 
    description='Absolute path to robot sdf file')

  declare_simulator_cmd = DeclareLaunchArgument(
    name='headless',
    default_value='False',
    description='Whether to execute gzclient')

  declare_slam_cmd = DeclareLaunchArgument(
    name='slam',
    default_value='False',
    description='Whether to run SLAM')

  declare_urdf_model_path_cmd = DeclareLaunchArgument(
    name='urdf_model', 
    default_value=default_urdf_model_path, 
    description='Absolute path to robot urdf file')
    
  declare_use_robot_state_pub_cmd = DeclareLaunchArgument(
    name='use_robot_state_pub',
    default_value='True',
    description='Whether to start the robot state publisher')

  declare_use_rviz_cmd = DeclareLaunchArgument(
    name='use_rviz',
    default_value='True',
    description='Whether to start RVIZ')
    
  declare_use_sim_time_cmd = DeclareLaunchArgument(
    name='use_sim_time',
    default_value='true',
    description='Use simulation (Gazebo) clock if true')

  declare_use_simulator_cmd = DeclareLaunchArgument(
    name='use_simulator',
    default_value='True',
    description='Whether to start the simulator')

  declare_world_cmd = DeclareLaunchArgument(
    name='world',
    default_value=world_path,
    description='Full path to the world model file to load')
   
  # Specify the actions
  
  # Start Gazebo server
  start_gazebo_server_cmd = IncludeLaunchDescription(
    PythonLaunchDescriptionSource(os.path.join(pkg_gazebo_ros, 'launch', 'gzserver.launch.py')),
    condition=IfCondition(use_simulator),
    launch_arguments={'world': world}.items())

  # Start Gazebo client    
  start_gazebo_client_cmd = IncludeLaunchDescription(
    PythonLaunchDescriptionSource(os.path.join(pkg_gazebo_ros, 'launch', 'gzclient.launch.py')),
    condition=IfCondition(PythonExpression([use_simulator, ' and not ', headless])))

  # Launch the robot
  spawn_entity_cmd = Node(
    package='gazebo_ros',
    executable='spawn_entity.py',
    arguments=['-entity', robot_name_in_model,
               '-file', sdf_model,
                  '-x', spawn_x_val,
                  '-y', spawn_y_val,
                  '-z', spawn_z_val,
                  '-Y', spawn_yaw_val],
       output='screen')

  # Start robot localization using an Extended Kalman filter
  start_robot_localization_cmd = Node(
    package='robot_localization',
    executable='ekf_node',
    name='ekf_filter_node',
    output='screen',
    parameters=[robot_localization_file_path, 
    {'use_sim_time': use_sim_time}])

  # Subscribe to the joint states of the robot, and publish the 3D pose of each link.
  start_robot_state_publisher_cmd = Node(
    condition=IfCondition(use_robot_state_pub),
    package='robot_state_publisher',
    executable='robot_state_publisher',
    namespace=namespace,
    parameters=[{'use_sim_time': use_sim_time, 
    'robot_description': Command(['xacro ', urdf_model])}],
    remappings=remappings,
    arguments=[default_urdf_model_path])

  # Launch RViz
  start_rviz_cmd = Node(
    condition=IfCondition(use_rviz),
    package='rviz2',
    executable='rviz2',
    name='rviz2',
    output='screen',
    arguments=['-d', rviz_config_file])   
    
  # Launch navigation to the charging dock
  start_navigate_to_charging_dock_cmd = Node(
    package=package_name,
    executable=nav_to_charging_dock_script)   

  # Launch navigation to the charging dock
  start_map_to_base_link_transform_cmd = Node(
    package=package_name,
    executable='map_to_base_link_transform.py')
    
  # Launch the ArUco marker pose transform
  start_aruco_marker_pose_transform_cmd = Node(
    package=package_name,
    executable='aruco_marker_pose_estimation_tf.py',
    parameters=[{'use_sim_time': use_sim_time}])

  # Launch the ROS 2 Navigation Stack
  start_ros2_navigation_cmd = IncludeLaunchDescription(
    PythonLaunchDescriptionSource(os.path.join(nav2_launch_dir, 'bringup_launch.py')),
    launch_arguments = {'namespace': namespace,
                        'use_namespace': use_namespace,
                        'slam': slam,
                        'map': map_yaml_file,
                        'use_sim_time': use_sim_time,
                        'params_file': params_file,
                        'autostart': autostart}.items())

  # Create the launch description and populate
  ld = LaunchDescription()

  # Declare the launch options
  ld.add_action(declare_namespace_cmd)
  ld.add_action(declare_use_namespace_cmd)
  ld.add_action(declare_autostart_cmd)
  ld.add_action(declare_map_yaml_cmd)
  ld.add_action(declare_params_file_cmd)
  ld.add_action(declare_rviz_config_file_cmd)
  ld.add_action(declare_sdf_model_path_cmd)
  ld.add_action(declare_simulator_cmd)
  ld.add_action(declare_slam_cmd)
  ld.add_action(declare_urdf_model_path_cmd)
  ld.add_action(declare_use_robot_state_pub_cmd)  
  ld.add_action(declare_use_rviz_cmd) 
  ld.add_action(declare_use_sim_time_cmd)
  ld.add_action(declare_use_simulator_cmd)
  ld.add_action(declare_world_cmd)

  # Add any actions
  ld.add_action(start_gazebo_server_cmd)
  ld.add_action(start_gazebo_client_cmd)
  #ld.add_action(spawn_entity_cmd)
  ld.add_action(start_robot_localization_cmd)
  ld.add_action(start_robot_state_publisher_cmd)
  ld.add_action(start_rviz_cmd)
  ld.add_action(start_navigate_to_charging_dock_cmd)
  ld.add_action(start_map_to_base_link_transform_cmd)
  ld.add_action(start_aruco_marker_pose_transform_cmd)
  ld.add_action(start_ros2_navigation_cmd)

  return ld

To run the scripts, type the following in a fresh terminal window.

ros2 launch two_wheeled_robot hospital_world_connect_to_charging_dock_v4.launch.py

Here is the output:

2-aruco-marker-pose-opencv

You will notice that the pose of the ArUco marker tag jumps around inside RViz. The reason for this has to do with factors such as the amount of lighting, the camera resolution, and the calibration parameters. Small adjustments on these values can have a big impact.

That’s it! Keep building!