How to Build a Multi-Obstacle-Avoiding Robot Using Arduino

In this post, I’ll show you how to build a robot that is able to move autonomously through an obstacle course (i.e. multi-obstacle environment).

multi-obstacle-avoiding-robot-gif-1

Table of Contents

Requirements

Here are our requirements (in order from when the robot starts moving, to when the robot stops moving):

  1. Robot shall start behind the starting line.
  2. Robot shall move forward once the program begins.
  3. Robot shall detect when it crosses over the starting line.
  4. Robot shall store the heading (direction) it is traveling at the moment it crosses the starting line.
  5. Robot shall start detecting obstacles as soon as it crosses the starting line.
  6. When not avoiding obstacles, the robot shall travel in the direction of the heading.
  7. Robot shall not touch any of the obstacles inside the obstacle course.
  8. Robot shall detect all obstacles that are at least 3 inches in height.
  9. Robot shall detect when it crosses the finish line.
  10. Robot shall travel in the direction of the heading for at least two seconds after it crosses the finish line.
  11. Robot shall come to a complete stop.

Return to Table of Contents

Prerequisites

  • You have the Arduino IDE (Integrated Development Environment) installed on either your PC (Windows, MacOS, or Linux).
  • If you have experience building a basic wheeled robot using Arduino, you will find this tutorial easier to follow. If you don’t have that experience, don’t worry. I’ll explain everything as we go.

Return to Table of Contents

You Will Need

The following components are used in this project. You will need:

Return to Table of Contents

Directions

Assemble the Body

The first thing we need to do is to assemble the body of the robot.

Open one of your robot car chassis kits.

Follow this video below to assemble the robot’s frame: 

Check out this post for the complete instructions for assembling the robot body (assemble just the body, not the electronics, for now).

Make sure that you have some male-to-male wires soldered to each of the leads of the two robot motors.

2020-04-06-113115

Now, open the other robot car chassis kit. 

Get one of the long robot car base pieces. 

robot_car_base_pieces

Also grab 2 standoffs, 2 long screws, and 4 hex nuts. 

standoff_screws
Standoffs, screws, and nuts

Use these standoffs, screws, and nuts to mount the base piece directly above the other base piece. 

2020-04-06-112122
2020-04-06-112201

Grab a 7/8 inch Velcro Fastener Square and attach a single 9V battery on the other end of the robot.

Take another 9V battery and mount it on the front of the robot on top of the upper base piece.

Attach the 9V battery connector to the battery.

2020-04-06-112617
Battery is located at the front-right of the car, affixed with a Velcro square. Ignore that other stuff for now

Return to Table of Contents

Assemble the Brain

Grab the Arduino and attach it just behind the 9V battery on the front of the robot (Ignore all those wires in the photo for now. You’ll get to those in a bit).

2020-04-06-112658
Breadboard (at left) and Arduino (in center) with a protective casing over it

You can use the Velcro squares to make sure the Arduino stays put. Make sure the black power input on the Arduino can easily be reached by the 9V battery connector (don’t plug anything in yet).

Attach the 400-point solderless breadboard just behind the Arduino using some Velcro squares.

Return to Table of Contents

Assemble the Nervous System

Now that the robot has its brain (Arduino mounted on the back of the robot) and a body, it needs a “nervous system,” communication lines that enable the brain to transmit signals to and from different parts of its body. In the context of this project, those communication lines are the wires that we need to connect between the different parts of the robot we’re building.

Design the Circuit Diagram

Before we connect any wires or components, it is good practice to design the circuit diagram. For all my Arduino projects, I use a software called Fritzing, but you can even plan out your circuits by hand.

Here is the pdf of the complete circuit diagram. With this complete circuit diagram, you should connect component by component, following the wiring exactly as you see it in the pdf.

No need to hurry. Go slow so that you don’t make any mistakes.

Connect the L293D to the Solderless Breadboard

The first thing we need to do is connect the L293D motor controller.

Check out this section on “nervous system” to learn how.

Test Your Motor Connection

To test your motor connection, you will need to connect the 9V battery (the one at the back of the robot sandwiched between the upper and lower base pieces) to the 400-point solderless breadboard as shown in the circuit diagram.

2020-04-04-093150

I used alligator clips and some small pieces of male-to-male wire to connect the + and – terminals of the 9V battery to the red (positive) and blue (ground) rails of the solderless breadboard.

2020-04-06-120618
2020-04-06-112436

Here is the code to test the motors. Upload it to your Arduino from your computer.

/**
* Addison Sears-Collins
* March 21, 2020
* This code is used to test the DC motors
* with the Dual H-Bridge Motor Driver (L293D) 
**/

/*---------------------------Definitions-------------------------------------*/
//Define pins for Motor A
#define ENABLE_A 5
#define MOTOR_A1 6
#define MOTOR_A2 4
 
// Define pins for Motor B
#define ENABLE_B 8
#define MOTOR_B1 7
#define MOTOR_B2 9

/*---------------------------Helper-Function Prototypes----------------------*/
void disableMotors(void);
void enableMotors(void);
void goForward(void);
void goLeft(void);
void goRight(void);
void setupPins(void);

/*---------------------------Module Code-------------------------------------*/
void setup() {

  setupPins();
    
  // Set the data rate in bits per second
  Serial.begin(9600);  
}

void loop() {  
  enableMotors();
  goForward();
  delay(2000);
  goRight();
  delay(500);
  goForward();
  delay(2000);  
  goLeft();
  delay(500);
  goForward();
  delay(2000); 
  disableMotors();
  delay(3000);
}

void disableMotors(){
  digitalWrite(ENABLE_A, LOW);
  digitalWrite(ENABLE_B, LOW);
}

void enableMotors(){
  digitalWrite(ENABLE_A, HIGH);
  digitalWrite(ENABLE_B, HIGH);  
}

void goForward(){
  digitalWrite(MOTOR_A1, LOW);
  digitalWrite(MOTOR_A2, HIGH);
  digitalWrite(MOTOR_B1, LOW);
  digitalWrite (MOTOR_B2, HIGH);
}

void goLeft(){
  digitalWrite(MOTOR_A1, LOW);
  digitalWrite(MOTOR_A2, HIGH);
  digitalWrite(MOTOR_B1, HIGH);
  digitalWrite (MOTOR_B2, LOW);
}

void goRight(){
  digitalWrite(MOTOR_A1, HIGH);
  digitalWrite(MOTOR_A2, LOW);
  digitalWrite(MOTOR_B1, LOW);
  digitalWrite (MOTOR_B2, HIGH);
}

void setupPins(){
  // Configure motor pins
  pinMode(ENABLE_A, OUTPUT);
  pinMode(MOTOR_A1, OUTPUT);
  pinMode(MOTOR_A2, OUTPUT);    
  pinMode(ENABLE_B, OUTPUT);
  pinMode(MOTOR_B1, OUTPUT);
  pinMode(MOTOR_B2, OUTPUT);  
}

Place the robot on the ground, somewhere with a lot of space, and power up the Arduino board using the 9V battery. If the robot starts moving, everything is working properly.

Connect the BNO055 9-DOF Absolute Orientation IMU Fusion Breakout

The BNO055 has some pins that come with it. These pins need to be soldered to the BNO055. To see how to set up the BNO055 and make sure it is working, check out this video.

2020-04-04-093134

Sink the pins of the BNO055 down into the 400-point solderless breadboard so that it is at the other end of the L293D motor controller.

Connect the HC-SR04 Ultrasonic Sensors (the “Eyes”)

Attach the four HC-SR04 ultrasonic sensors to the front of the robot. These sensors are the “eyes” of the robot and are used to detect obstacles.

2020-04-04-093114

The pins of the sensors should slip right through the groove of the upper base piece.

Notice how I used some of the Velcro squares to keep the sensors in place and upright.

2020-04-06-115623

Wire the sensors exactly as shown in the circuit diagram. Take your time wiring everything up. There are a lot of wires, and you want to make sure everything is wired up correctly.

I used some Velcro squares at the point where the wires slip over the pins of the ultrasonic sensors so that everything stays firm in place.

2020-04-06-115600

Test Your HC-SR04 Ultrasonic Sensors

Upload this code to your Arduino:

/**
 *  This program tests the ultrasonic
 *  distance sensor (HC-SR04)
 * 
 * @author Addison Sears-Collins
 * @version 1.0 2020-03-22
 */
 
/*---------------------------Definitions-------------------------------------*/

// Right sensor
#define TRIG_RIGHT A2
#define ECHO_RIGHT A1

// Right-center sensor
#define TRIG_RIGHT_CTR 12
#define ECHO_RIGHT_CTR 13

// Left-center sensor
#define TRIG_LEFT_CTR 10
#define ECHO_LEFT_CTR 11

// Left sensor
#define TRIG_LEFT 3
#define ECHO_LEFT 2

/*---------------------------Helper-Function Prototypes----------------------*/
void doPingRight(void);
void doPingRightCtr(void);
void doPingLeftCtr(void);
void doPingLeft(void);
void getDistances(void);
void setupPins(void);

/*---------------------------Module Variables----------------------*/
int distance_right;
int distance_rightctr;
int distance_leftctr;
int distance_left;

/*---------------------------Module Code-------------------------------------*/
void setup(){

  setupPins();
  
  // Setup serial communication 
  Serial.begin(9600);
}
 
void loop(){

  getDistances();
 
  // Print the distances in inches
  Serial.println((String)"Distance Right: " + distance_right); 
  Serial.println((String)"Distance Right Center: " + distance_rightctr);
  Serial.println((String)"Distance Left Center: " + distance_leftctr);
  Serial.println((String)"Distance Left: " + distance_left);
  Serial.println("");
 
  // Pause for 1.0 second
  delay(1000);
}

void doPingRight() {
  /*
   * Returns the distance to the obstacle as an integer in inches
   */
  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_RIGHT, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_RIGHT, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_RIGHT, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_right = pulseIn(ECHO_RIGHT, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_right = distance_right / 74 / 2;
  distance_right = abs(distance_right);
}

void doPingRightCtr(){
  /*
   * Returns the distance to the obstacle as an integer in inches
   */
  
  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_RIGHT_CTR, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_RIGHT_CTR, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_RIGHT_CTR, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_rightctr = pulseIn(ECHO_RIGHT_CTR, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_rightctr = distance_rightctr / 74 / 2;
  distance_rightctr = abs(distance_rightctr);
}

void doPingLeftCtr(){
  /*
   * Returns the distance to the obstacle as an integer in inches
   */

  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_LEFT_CTR, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_LEFT_CTR, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_LEFT_CTR, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_leftctr = pulseIn(ECHO_LEFT_CTR, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_leftctr = distance_leftctr / 74 / 2;
  distance_leftctr = abs(distance_leftctr);
}

void doPingLeft(){
  /*
   * Returns the distance to the obstacle as an integer in inches
   */

  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_LEFT, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_LEFT, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_LEFT, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_left = pulseIn(ECHO_LEFT, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_left = distance_left / 74 / 2;
  distance_left = abs(distance_left); 
}

void getDistances() {
  // Take distance readings on the HC-SR04
  doPingRight();
  doPingRightCtr();
  doPingLeftCtr();
  doPingLeft();   
}

void setupPins(){
  // Configure HC-SR04 pins
  pinMode(TRIG_RIGHT, OUTPUT);
  pinMode(ECHO_RIGHT, INPUT);
  pinMode(TRIG_RIGHT_CTR, OUTPUT);
  pinMode(ECHO_RIGHT_CTR, INPUT);
  pinMode(TRIG_LEFT_CTR, OUTPUT);
  pinMode(ECHO_LEFT_CTR, INPUT);
  pinMode(TRIG_LEFT, OUTPUT);
  pinMode(ECHO_LEFT, INPUT);
}

While the program is running, click the magnifying glass in the upper right corner of the Arduino IDE. You should see the distances from each sensor to the closest object (in inches). If you wave your hand in front of the sensors, you can see how the readings change.

magnifying_glass

Connect the Reflectance Sensor

The reflectance sensor comes with some pins. Make sure those pins are soldered to the reflectance sensor.

Cut out a tiny piece of velcro and attach the reflectance sensor between the right and right-center HC-SR04 ultrasonic sensors.

2020-04-06-120331
2020-04-06-120206
2020-04-06-120155

Wire the reflectance sensor exactly as shown in the circuit diagram.

Test Your Reflectance Sensor

Upload this code to your Arduino:

/**
* Addison Sears-Collins
* March 25, 2020
* This code is used to test the QTR-1A Reflectance Sensor
**/

/*---------------------------Definitions-------------------------------------*/
//Define pin for the QTR-1A Reflectance Sensor 
#define IR_SENSOR A3

/*---------------------------Helper-Function Prototypes----------------------*/
void blinkLED(void);
int readIRSensor(void);

/*---------------------------Module Variables--------------------------------*/
// Store sensor readings here
int ir_reflect_previous;
int ir_reflect_current;

// Try values between 100 and 600. 
// Helps determine if the robot crosses the reflective tape
int threshold = 200;

// Keep track of the number of times the robot crosses over
// the reflective tape
int stage = 0;

void setup() {

  // initialize digital pin LED_BUILTIN as an output.
  pinMode(LED_BUILTIN, OUTPUT);
  
  // Setup serial communication 
  Serial.begin(9600);

  // Get initial readings on the reflectance sensor
  ir_reflect_previous = readIRSensor();  
  ir_reflect_current = ir_reflect_previous;
}

void loop() {

  // Read the reflectance sensor
  ir_reflect_current = readIRSensor();
 
  // Check to see if we have crossed over the reflective tape
  if ((ir_reflect_previous - ir_reflect_current) >= threshold) {

    blinkLED();
    
    // Update the number of crosses
    stage = stage + 1;

    // Print the stage
    Serial.println("----------------------------------------");
    Serial.println((String)"Stage: " + stage);   
    Serial.println("----------------------------------------");
  }
  
  // Print the readings
  Serial.println((String)"Previous: " + ir_reflect_previous);
  Serial.println((String)"Current: " + ir_reflect_current);
  Serial.println("");

  // Update the previous reading
  ir_reflect_previous = ir_reflect_current;
  
  delay(500);
}

void blinkLED(){
  for (int i = 0; i < 5; i++) {
    digitalWrite(LED_BUILTIN, HIGH);   // turn the LED on 
    delay(50);                       // wait for half a second
    digitalWrite(LED_BUILTIN, LOW);    // turn the LED off 
    delay(50);                       // wait for half a second
  }
}

int readIRSensor(){
  /*
   * Returns the sensor reading
   */
  int temp_reading = 0;
  int average = 0;
 
  // Grab four measurements and calculate the average
  for (int i = 0; i < 4; i++) {
  
    temp_reading = analogRead(IR_SENSOR);
 
    // Compute running sum
    average += temp_reading;
 
    delayMicroseconds(2); 
  }
 
  // Return the average 
  return (average / 4); 
}

Click the magnifying glass in the upper right corner of the Arduino IDE. You should see the reflectance sensor readings printing out to the screen.

Return to Table of Contents

Set Up Your Obstacle Course

Now let’s set up the obstacle course. 

Starting Line

Place a long piece of 3M silver reflective tape down on the floor. This is the starting line. As soon as the robot detects this tape, it will begin detecting obstacles (i.e. pink lemonade cans in my case).

2020-04-04-093040

Finish Line

15-20 feet away from the Starting Line, place a long piece of 3M silver reflective tape down on the floor. This is the finish line. As soon as the robot detects this tape, it will begin maintaining the same heading it had when it crossed the Starting line. It will maintain this heading for two seconds before coming to a complete stop.

2020-04-04-093052

Multi-Obstacle Environment

Place a bunch of soda cans within your course…before the finish line, but after the starting line. Make sure the cans are at least 18 inches apart from each other.

2020-04-04-093209

Return to Table of Contents

Upload the Final Code

Now go back to your computer and upload the following code to your Arduino. If you’re interested in understanding what is going on inside the code, just go through it one line at a time, starting from the top, reading all my comments along the way.

#include <Wire.h> // Library for the BNO055
#include <Adafruit_Sensor.h> // Library for the BNO055
#include <Adafruit_BNO055.h> // Library for the BNO055
#include <utility/imumaths.h> // Library for the BNO055

/**
* Addison Sears-Collins
* April 3, 2020
* This code enables a robot to navigate through
* a multi-obstacle environment (MOE). 
* The robot starts detecting obstacles once it crosses 
* 3M silver reflective tape. The robot finishes once it 
* crosses 3M silver reflective tape for the second time.
* 
* To calibrate the BNO055 Orientation Sensor, 
* start out with the robot facing 
* due North (0 degrees). 
**/

/*----------Definitions----------*/
//Define pins for Motor A
#define ENABLE_A 5
#define MOTOR_A1 6
#define MOTOR_A2 4
 
// Define pins for Motor B
#define ENABLE_B 8
#define MOTOR_B1 7
#define MOTOR_B2 9

// Define pin for the QTR-1A Reflectance Sensor 
#define IR_SENSOR A3

// Right sensor
#define TRIG_RIGHT A2
#define ECHO_RIGHT A1

// Right-center sensor
#define TRIG_RIGHT_CTR 12
#define ECHO_RIGHT_CTR 13

// Left-center sensor
#define TRIG_LEFT_CTR 10
#define ECHO_LEFT_CTR 11

// Left sensor
#define TRIG_LEFT 3
#define ECHO_LEFT 2

// Avoidance delay
// Number of 50ms increments we want 
// to move forward after
// moving away from the object
/***** Try 1-5 depending on battery strength********/
#define AVOIDANCE_DELAY 1

/*---Helper-Function Prototypes---*/
// Motors
void disableMotors(void);
void enableMotors(void);
void goForward(void);
void goLeft(void);
void goRight(void);
void leftAvoid(void);
void rightAvoid(void);

void setupPins(void);

// Headings
void calculateHeadingError(void);
void correctHeading(void);

// Ultrasonic sensors
void doPingRight(void);
void doPingRightCtr(void);
void doPingLeftCtr(void);
void doPingLeft(void);
void getDistances(void);

// IR sensor
void readIRSensor(void);

// Obstacle avoidance
void avoidObstacles(void);

/*--------Module Variables--------*/
bool crossed_the_tape = false;
bool done = false;

// Keep track of the headings
int desired_heading;
int current_heading;
int heading_threshold = 60; // 120 degree cone until stage 2
int heading_error;

// Store sensor readings here
int ir_reflect_previous;
int ir_reflect_current;

// Try values between 100 and 600. 
// Helps determine if the robot crosses the reflective tape
int threshold = 200;

// For Ultrasonic sensor distance readings
int distance_right;
int distance_rightctr;
int distance_leftctr;
int distance_left;
int limit = 9; // Inches, try 5-10 depending on battery strength
bool right_or_left = false; // Switch

// Keep track of the time in milliseconds
unsigned long start_time;
unsigned long time_elapsed_threshold = 2000; 

Adafruit_BNO055 bno = Adafruit_BNO055(55);

/*----------Module Code-----------*/
void setup(void) {

  // Start the car
  setupPins();
  enableMotors();

  // Get initial readings on the IR sensor
  ir_reflect_previous = analogRead(IR_SENSOR);  
  ir_reflect_current = ir_reflect_previous;
  
  // Initialize the orientation sensor
  if(!bno.begin()) {
    // There was a problem detecting the 
    // BNO055 ... check your connections 
    //Serial.print("Ooops, no BNO055 detected ");
    //Serial.print("... Check your wiring or I2C ADDR!");
    while(1);
  }
  bno.setExtCrystalUse(true);  
}

void loop(void) {

  // Stage 0 - before the robot enters the 
  // multi-obstacle environment 
  while(!crossed_the_tape) {

    delay(50);
    
    // Read desired heading
    sensors_event_t event;
    bno.getEvent(&event);
    desired_heading = event.orientation.x;
    
    goForward();
    
    readIRSensor();
  }

  crossed_the_tape = false;

  // Stage 1
  while(!crossed_the_tape) {

    // Read all four HC-SR04 sensors
    getDistances();

    // Avoid any obstacle along the way
    avoidObstacles();
  }

  heading_threshold = 10;
  
  // Capture the time
  start_time = millis();

  // Stage 2
  while(!done) {

    calculateHeadingError();

    // Correct the heading if needed
    if (abs(heading_error) <= abs(heading_threshold)){
      goForward();
    }
    else {
      correctHeading();
      goForward();
    }

    // Check to see if we are done
    if (((millis()) - start_time) > time_elapsed_threshold) {
      done = true;
    }
  }
  
  while(done) {
    disableMotors();
    delay(1000);
  }

}

void avoidObstacles(){
  // Avoid any objects
  if ((distance_leftctr < limit) && (distance_rightctr < limit)){

    // Switch back and forth
    if (right_or_left) {
      rightAvoid();
    }
    else {
      leftAvoid();
    }
    right_or_left = !(right_or_left);
  }
  else if((distance_left < limit) || (distance_leftctr < limit)) {
    rightAvoid();
  }
  else if((distance_right < limit) || (distance_rightctr < limit)) {
    leftAvoid();
  }
  else {
    calculateHeadingError();

    // Correct the heading if needed
    if (abs(heading_error) <= abs(heading_threshold)){
        goForward();
    }
    else {
      correctHeading();
      goForward();
    }
    // Check to see if we have crossed the tape
    readIRSensor();
    delay(50);
  }
}

void calculateHeadingError() {
  // Read the current heading
  sensors_event_t event;
  bno.getEvent(&event);
  current_heading = event.orientation.x;

  // Calculate the heading error
  heading_error = current_heading - desired_heading;
  if (heading_error > 180) {
      heading_error -= 360;
  }
  if (heading_error < -180) {
      heading_error += 360;
  }
}

void correctHeading(){  
  // Turn the vehicle until it is facing the correct
  // direction
  if (heading_error < -heading_threshold) {
    while (heading_error < -heading_threshold) {
      goRight();
      delay(4);
      calculateHeadingError();
    }
  }
  else {
    while (heading_error > heading_threshold) {
      goLeft();
      delay(4);
      calculateHeadingError();
    }
  }
}

void doPingRight() {
  /*
   * Returns the distance to the obstacle as an integer in inches
   */
  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_RIGHT, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_RIGHT, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_RIGHT, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_right = pulseIn(ECHO_RIGHT, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_right = distance_right / 74 / 2;
  distance_right = abs(distance_right);
}

void doPingRightCtr(){
  /*
   * Returns the distance to the obstacle as an integer in inches
   */
  
  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_RIGHT_CTR, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_RIGHT_CTR, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_RIGHT_CTR, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_rightctr = pulseIn(ECHO_RIGHT_CTR, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_rightctr = distance_rightctr / 74 / 2;
  distance_rightctr = abs(distance_rightctr);
}

void doPingLeftCtr(){
  /*
   * Returns the distance to the obstacle as an integer in inches
   */

  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_LEFT_CTR, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_LEFT_CTR, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_LEFT_CTR, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_leftctr = pulseIn(ECHO_LEFT_CTR, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_leftctr = distance_leftctr / 74 / 2;
  distance_leftctr = abs(distance_leftctr);
}

void doPingLeft(){
  /*
   * Returns the distance to the obstacle as an integer in inches
   */

  // Make the Trigger LOW (0 volts) for 2 microseconds
  digitalWrite(TRIG_LEFT, LOW);
  delayMicroseconds(2); 
     
  // Emit high frequency 40kHz sound pulse
  // (i.e. pull the Trigger) 
  // by making Trigger HIGH (5 volts) 
  // for 10 microseconds
  digitalWrite(TRIG_LEFT, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_LEFT, LOW);
      
  // Detect a pulse on the Echo pin. 
  // pulseIn() measures the time in 
  // microseconds until the sound pulse
  // returns back to the sensor.    
  distance_left = pulseIn(ECHO_LEFT, HIGH);
 
  // Speed of sound is:
  // 13511.811023622 inches per second
  // 13511.811023622/10^6 inches per microsecond
  // 0.013511811 inches per microsecond
  // Taking the reciprocal, we have:
  // 74.00932414 microseconds per inch 
  // Below, we convert microseconds to inches by 
  // dividing by 74 and then dividing by 2
  // to account for the roundtrip time.
  distance_left = distance_left / 74 / 2;
  distance_left = abs(distance_left); 
}

void getDistances() {
  // Take distance readings on the HC-SR04
  doPingRight();
  doPingLeftCtr();
  doPingRightCtr();  
  doPingLeft();   
}

void disableMotors(){
  digitalWrite(ENABLE_A, LOW);
  digitalWrite(ENABLE_B, LOW);
}

void enableMotors(){
  digitalWrite(ENABLE_A, HIGH);
  digitalWrite(ENABLE_B, HIGH);  
}

void goForward(){
  digitalWrite(MOTOR_A1, LOW);
  digitalWrite(MOTOR_A2, HIGH);
  digitalWrite(MOTOR_B1, LOW);
  digitalWrite (MOTOR_B2, HIGH);
}

void goLeft(){
  digitalWrite(MOTOR_A1, LOW);
  digitalWrite(MOTOR_A2, HIGH);
  digitalWrite(MOTOR_B1, HIGH);
  digitalWrite (MOTOR_B2, LOW);
}

void goRight(){
  digitalWrite(MOTOR_A1, HIGH);
  digitalWrite(MOTOR_A2, LOW);
  digitalWrite(MOTOR_B1, LOW);
  digitalWrite (MOTOR_B2, HIGH);
}

void leftAvoid(){
  // Go to the left when an object is detected
  // on the right-side of the vehicle
  while((distance_right < limit) || (distance_rightctr < limit)) {
    goLeft();
    delay(4);
    doPingRight();
    doPingRightCtr();
  }
  goForward();

  for (int i = 0; i < AVOIDANCE_DELAY; i++) {
    // Read the reflectance sensor
    ir_reflect_current = analogRead(IR_SENSOR);

    // Check to see if we have crossed over the reflective tape
    if ((ir_reflect_previous - ir_reflect_current) >= threshold) {

      // Update if we crossed the tape
      crossed_the_tape = true;

      break;
    }
    // Update the previous reading
    ir_reflect_previous = ir_reflect_current; 
      
    delay(50);    
  }
}

void readIRSensor() {

  // Read the reflectance sensor
  ir_reflect_current = analogRead(IR_SENSOR);

  // Check to see if we have crossed over the reflective tape
  if ((ir_reflect_previous - ir_reflect_current) >= threshold) {

    // Update if we crossed the tape
    crossed_the_tape = true;
  }    
  // Update the previous reading
  ir_reflect_previous = ir_reflect_current;
}

void rightAvoid(){
  // Go to the right when an object is detected
  // on the left-side of the vehicle
  while((distance_left < limit) || (distance_leftctr < limit)) {
    goRight();
    delay(4);
    doPingLeft();
    doPingLeftCtr();
  }
  goForward();

  for (int i = 0; i < AVOIDANCE_DELAY; i++) {
    // Read the reflectance sensor
    ir_reflect_current = analogRead(IR_SENSOR);

    // Check to see if we have crossed over the reflective tape
    if ((ir_reflect_previous - ir_reflect_current) >= threshold) {

      // Update if we crossed the tape
      crossed_the_tape = true;

      break;
    }
    // Update the previous reading
    ir_reflect_previous = ir_reflect_current; 

    delay(50);
  }
}

void setupPins(){
  // Configure motor pins
  pinMode(ENABLE_A, OUTPUT);
  pinMode(MOTOR_A1, OUTPUT);
  pinMode(MOTOR_A2, OUTPUT);    
  pinMode(ENABLE_B, OUTPUT);
  pinMode(MOTOR_B1, OUTPUT);
  pinMode(MOTOR_B2, OUTPUT);  

  // Configure HC-SR04 pins
  pinMode(TRIG_RIGHT, OUTPUT);
  pinMode(ECHO_RIGHT, INPUT);
  pinMode(TRIG_RIGHT_CTR, OUTPUT);
  pinMode(ECHO_RIGHT_CTR, INPUT);
  pinMode(TRIG_LEFT_CTR, OUTPUT);
  pinMode(ECHO_LEFT_CTR, INPUT);
  pinMode(TRIG_LEFT, OUTPUT);
  pinMode(ECHO_LEFT, INPUT);
}

Return to Table of Contents

Deploy Your Robot

Now, we’ve come to the time you’ve been waiting for.  It’s time to move the robot through the obstacle course from start to finish.

Set your robot on the floor 3-5 feet before the starting line.

Plug in the Arduino, and within a second or two, you should see your robot take off, moving through the obstacle all by itself! Two seconds after it crosses the finish line, it should come to a complete stop.

Return to Table of Contents

Video

Return to Table of Contents

Troubleshooting

If your robot is not moving through the obstacle course, go back to the beginning of this post and make sure that everything is wired up and connected as I have shown. 

Also, you can try tweaking the defined constants in the final code to see if your robot behaves better.

That’s it for now. Congratulations, you have built an autonomous mobile robot from scratch that can sense, think, and act. 

Keep building!

Return to Table of Contents

Omni-Directional Wheeled Robot Simulation in Python

In this post, I will show you a computer simulation I developed of an omni-directional vehicle with Mecanum wheels. This project was developed during my graduate studies at Johns Hopkins University. My goal was to develop a 2D representation of this type of robot so that I could implement the kinematic equations and control algorithms from scratch, using nothing but Python. 

mecanum_wheel_robot_simulation

After I developed the source code, I converted the entire Python file (.py) into an executable (.exe file …. i.e. a program that can run on any machine) using a special software program called PyInstaller.

Table of Contents

Prerequisites

  • Python 3.6 (or higher)

Return to Table of Contents

Requirements

Here are the requirements for this project:

  • Build a simulation of an omni-directional wheeled robot from scratch.
  • Create an executable so that the simulation can be launched and interfaced with on a normal Windows machine – OS: XP or higher.
  • Show the kinematic equations and control algorithm used (see next section).
  • Robot’s dimensions must be 4 feet and 2 feet – that is, wheel plane to wheel plane, and axle to axle. 
  • The simulated environment must be a flat, high friction (i.e., assume no slippage) ‘infinite’ area, with a viewable area (on screen) of 30 feet long by 15 feet wide.
  • The environment view is a plan (aerial) view.
  • The environment area must have a 6inch by 6inch visible grid underlaid on it (i.e., on its surface but under the vehicle) 
    • This grid below is the simulation environment that appears when the program is launched.
1-environment
  • The viewable area must stay fixed until such time as the vehicle reference point travels within 3 feet of the viewable edge, at which point the viewable area shall be repositioned so that the vehicle is at its center.
  • An interface is required, to the side of the viewable area.
2-interface-required
  • Autonomous control of the vehicle is required. Maximum speed of the vehicle is 15 ft/sec.
  • The vehicle image must move on screen in agreement with the controlled movement.
  • The radius of the wheels on the robot must be 0.5 feet.
  • Simulation must have a reset capability that when executed, resets the vehicle to the origin at rest, with no commands executed.
3-reset-capability

The robot must have the following modes:

Autonomous Control 1: The direction (θP), speed, and rate of rotation of the vehicle reference point can be specified and executed. In this case, the vehicle will keep executing given command(s) until a ‘stop’ command is provided.

4-autonomous-control-mode

Autonomous Control 2: The user shall be able to specify the rotation rate of each wheel and the vehicle will keep executing the given commands until a ‘stop’ command. In this mode alone, any mouse or keyboard button push will be considered a ‘stop’ command.

5-autonomous-control-mode-2

Point Execution: A straight line path may be specified by an end point (XF,YF), including a desired end orientation (θF). The vehicle’s current pose will be considered its starting point and orientation.

6-point-execution

Circle Execution: A circle may be defined (instead of points) and executed, with user-defined radius and inclination, θP (direction of circle center from current vehicle position).

7-circle-execution

Rectangle Execution: A rectangle may be defined (instead of points) and executed, with user-defined side lengths and inclination, θP, of diagonally opposite vertex from current vehicle position. Vehicle will start at a vertex.

8-rectangle-execution

Figure 8 Execution: A figure 8 may be defined (instead of points) and executed, consisting of two circles with two user-defined, possibly different, radii, and inclination, θP (direction of circle centers from current vehicle position).

9-figure-8-execution

Waypoint Execution: Waypoints (points between start and end points), during Point Execution, can be specified (minimum 3 waypoints – although none are required) and executed.

10-waypoint-execution

Other Requirements

  • Time taken to get from current to end points can be specified for all path executions above except for the open-ended path of the Autonomous Control Mode. If allotted time requires the vehicle to travel faster than its maximum speed, an error is shown on the interface.
11-error-log
  • Both the user-defined path to be executed and the path traveled by the vehicle reference point must be displayed on screen in two different colors that are easily discernible from each other.
12-easily-discernible
  • Simulation must provide: Vehicle position display, Wheel rate displays, Robot x- and y- velocity displays.
13-simulation-must-provide-display

Return to Table of Contents

List of Kinematic Equations Used

mecanum-wheel-robot

Forward Kinematic Equations

14-forward-kinematic-equations

Where:

  • R = wheel radius (e.g. feet)
  • Vx = Velocity in the x direction in the robot (local) reference frame (e.g. feet/second)
  • Vy = Velocity in the y direction in the robot (local) reference frame (e.g. feet/second)
  • ω = rotation rate of the vehicle reference point (e.g. in degrees/second)
  • Ψ = wheel rotation rate (e.g. in degrees per second)

Inverse Kinematic Equations

15-inverse-kinematic-equations

Return to Table of Contents

List of Control Algorithms Used

The control algorithms are contained inside omnidirectional_robot.py. Here is the list:

  1. control_robot_body(direction, speed, rotation_rate)
  2. control_robot_wheels(rot1, rot2, rot3, rot4)
  3. point_execution_no_wp(x_final, y_final, orientation_final, deadline):
  4. point_execution_with_wp(x_wp1, y_wp1, x_wp2, y_wp2, x_wp3, y_wp3, x_final, y_final, orientation_final, deadline)
  5. move_in_a_circle(radius, direction, deadline)
  6. move_in_a_rectangle(length_in_ft, direction_of_opp_vertex, deadline)
  7. move_in_a_figure_eight(circle1_radius, circle2_radius, direction, deadline)

Return to Table of Contents

List of Math Equations Used

Calculate the interior angle in degrees between diagonal of rectangle and the side length

  • interior_angle = acos(length_in_ft/diagonal_length))

Converting local velocity in the robot frame to global velocity in the global (inertial reference frame)

  • v_x_global = (v_x_local * cos(vehicle_angle_ref)) – (v_y_local * sin(vehicle_angle_ref))
  • v_y_global = (v_x_local * sin(vehicle_angle_ref)) + (v_y_local * cos(vehicle_angle_ref))

Calculating the global velocities form the direction/heading angle (yaw)

  • v_x_global = magnitude(v) * cos(angle for yaw)
  • v_y_global = magnitude(v) * sin(angle for yaw)

Converting global velocity in the global (inertial reference frame) to local velocity in the robot frame

  • v_x_local = (v_x_global * cos(vehicle_angle_ref)) + (v_y_global * sin(vehicle_angle_ref))
  • v_y_local = (-v_x_global * sin(vehicle_angle_ref)) + (v_y_global * cos(vehicle_angle_ref))

Calculating the direction of travel of the vehicle reference point in degrees

  • direction_global = atan2((y_final – y_pos_ref),(x_final – x_pos_ref))

Calculating the distance between two points in feet

  • distance = square_root((x2-x1)2 + (y2-y1)2)

Calculating the speed of the vehicle using the distance and time

  • speed = distance / time

Convert direction (local) into direction (global) for the rectangle implementation

  • direction_global = direction_of_opp_vertex + (vehicle_angle_ref)

Determining the new x-coordinate of the vehicle reference point

  • x_pos_ref = x_initial + (v_x_global * dt)

Determining the new y-coordinate of the vehicle reference point

  • y_pos_ref = y_initial + (v_y_global * dt)

Determining the new orientation of the vehicle reference point

  • vehicle_angle_ref = vehicle_angle_ref_initial + (rotation_rate * dt)

Equation for a circle centered at point (H, K)

  • x = rcos(Ɵ) + H
  • y = rsin(Ɵ) + K

Get the length of the diagonal of the rectangle

  • diagonal_length = abs(length_in_ft/cos(direction_of_opp_vertex))

Get the width of the diagonal of the rectangle

  • width_in_ft = abs(diagonal_length *sin(direction_of_opp_vertex))

Return to Table of Contents

Source Code

Here is the source code for the program. Make sure you have the Numpy and Matplotlib libraries installed on your system before you run the program. The typical syntax for installing these libraries if you are using something like Anaconda for your Python framework is:

pip install numpy
pip install matplotlib

Other than that, you don’t need anything else to run the program. Just copy and paste this code into your favorite place to run Python programs, and off you go!

import math
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import time
import tkinter as tk

# Project: Omnidirectional Mecanum-Wheeled Robot
# Author: Addison Sears-Collins
# Date created: 02/22/2020

################### Initialize Constants ##################
# Set the robot vehicle's dimensions
# Robot is 2 feet in width and 4 feet in length
ROBOT_WIDTH = 2.0
ROBOT_LENGTH = 4.0

# Maximum speed of the robot in feet/second
MAX_SPEED = 15.0

# Robot vehicle's wheel radius in feet
WHEEL_RADIUS = 0.5

# Length and width of the viewable area on screen
# The grid is 30 feet long by 15 feet wide
ENV_LENGTH = 30.0
ENV_WIDTH = 15.0

# The distance between ticks on the x and y-axis in feet
# Each square on the grid is 6inch by 6inch 
X_TICK_SPACING = 0.5
Y_TICK_SPACING = 0.5

# Boundary in feet. Viewable area will stay fixed until 
# such time as the vehicle reference point travels within
# 3 feet of the viewable edge.
BOUNDARY = 3.0

################### Global Variables ######################
# The robot vehicle object (which will be a rectangle)
rect = None

# The coordinates of the vehicle reference point
x_pos_ref = None # in feet
y_pos_ref = None # in feet
vehicle_angle_ref = None # in degrees

# The grid specifications
x_axis_min = None
x_axis_max = None
y_axis_min = None
y_axis_max = None

# Store historical x and y-values in order to track
# the path traveled by the vehicle reference point
hist_x_vals = []
hist_y_vals = []

# The circle that pertains to the move_in_a_circle() method
# and the figure 8 method
circle1 = None

# The rectangle that pertains to the move_in_a_rectangle()
# method
this_rect = None

# Create a window using the Tk class
window = tk.Tk()

# Global flag
running_control_robot_body = False
running_control_robot_wheels = False

##################### Helper Methods ######################
def convert_local_velocity_to_global(v_x_local, v_y_local):
    """
    Convert the velocities in the x and y-directions in 
    the local reference frame to velocities in the global
    reference frame.
    @param v_x_local float: Velocity in the x-direction 
        in the local reference frame in ft/s
    @param v_y_local float: Velocity in the y-direction 
        in the local reference frame in ft/s
    @return v_x_global float: Velocity in the x-direction 
        in the global reference frame in ft/s
    @return v_y_global float: Velocity in the y-direction 
        in the global reference frame in ft/s
    """
    v_x_global = (v_x_local * math.cos(math.radians(
        vehicle_angle_ref))) - (v_y_local * math.sin(
        math.radians(vehicle_angle_ref)))

    v_y_global = (v_x_local * math.sin(math.radians(
        vehicle_angle_ref))) + (v_y_local * math.cos(
        math.radians(vehicle_angle_ref)))

    return v_x_global, v_y_global 

# Method to close the Tkinter window
def close_window(): 
    window.destroy()

def get_distance_btw_points(x1,y1,x2,y2):
    """
    Calculate the distance between two points in feet.
    @param x1: The x-coordinate of point 1
    @param y1: The y-coordinate of point 1
    @param x2: The x-coordinate of point 2
    @param y2: The y-coordinate of point 2
    @return distance: float: in feet
    """
    distance = math.sqrt((x2-x1)**2 + (y2-y1)**2)
    return distance

def get_robot_motion_values(rot1, rot2, rot3, rot4):
    """
    Calculate the velocities in the x and y-directions in 
    the local reference frame as well as the rotation rate
    of the vehicle reference point.
    @param rot1: Rotation rate of wheel 1 in degrees/sec
    @param rot2: Rotation rate of wheel 2 in degrees/sec
    @param rot3: Rotation rate of wheel 3 in degrees/sec
    @param rot4: Rotation rate of wheel 4 in degrees/sec
    @return v_x_local float: Velocity in the x-direction 
        in the local reference frame in ft/s
    @return v_y_local float: Velocity in the y-direction 
        in the local reference frame in ft/s
    @return rotation_rate: Rotation rate of the vehicle
        reference point in degrees per second in the 
        counter-clockwise direction
    """
    v_x_local = (WHEEL_RADIUS/4) * (
        rot1 - rot2 - rot3 + rot4)
    v_y_local = (WHEEL_RADIUS/4) * (
        rot1 + rot2 + rot3 + rot4)
    rotation_rate = (WHEEL_RADIUS/(4*(
        ROBOT_LENGTH + ROBOT_WIDTH)))*(
        -rot1 + rot2 - rot3 + rot4)

    return v_x_local, v_y_local, rotation_rate

def get_wheel_rot_rates(v_x_local, v_y_local, 
        rotation_rate):
    """
    Calculate the wheel rotation rates.
    @param v_x_local: Velocity in the x-direction 
        in the local reference frame in ft/s
    @param v_y_local: Velocity in the y-direction 
        in the local reference frame in ft/s
    @param rotation_rate: Rotation rate in degrees per 
        second in the counter-clockwise direction (vehicle
        reference point)
    @return rot1, rot2, rot3, rot4: float: Wheel rotation 
        rates in degrees per second
    """
    rot1 = (1/WHEEL_RADIUS)*(v_y_local + v_x_local - (
        ROBOT_LENGTH + ROBOT_WIDTH) * rotation_rate)
    rot2 = (1/WHEEL_RADIUS)*(v_y_local - v_x_local + (
        ROBOT_LENGTH + ROBOT_WIDTH) * rotation_rate)
    rot3 = (1/WHEEL_RADIUS)*(v_y_local - v_x_local - (
        ROBOT_LENGTH + ROBOT_WIDTH) * rotation_rate)
    rot4 = (1/WHEEL_RADIUS)*(v_y_local + v_x_local + (
        ROBOT_LENGTH + ROBOT_WIDTH) * rotation_rate)

    return rot1, rot2, rot3, rot4

def get_speed(distance, time):
    """
    Calculate the speed of the vehicle using the distance 
    and time.
    @param distance: The distance the robot vehicle must 
        travel between 2 or more points in feet
    @param time: Total travel time in seconds
    @return speed: float
    """
    speed = distance / time
    return speed

def get_velocity_magnitude(velocity_x, velocity_y):
    """
    Calculate the speed of the vehicle using the x and y
    components of the velocity.
    @param velocity_x: Velocity in x-direction in ft/sec
    @param velocity_y: Velocity in y-direction in ft/sec
    @return speed: float
    """
    speed = math.sqrt(((velocity_x)**2) + ((velocity_y)**2))
    return speed

def is_close_to_edge(x, y):
    """
    The viewable area will stay fixed until such time as 
    the vehicle reference point travels within 3 feet of 
    the viewable edge. Check if the viewable area needs to
    be repositioned.
    @param x: x-coordinate of the vehicle reference point
    @param y: y-coordinate of the vehicle reference point
    @return bool
    """
    if (x - x_axis_max) > -BOUNDARY:
        return True
    elif (x - x_axis_min) < BOUNDARY:
        return True
    elif (y - y_axis_max) > -BOUNDARY:
        return True
    elif (y - y_axis_min) < BOUNDARY:
        return True
    else:
        return False

def is_too_fast(speed):
    """
    The maximum speed of the robot vehicle is 15 ft/second
    Check if the user input requires the vehicle to travel
    faster than its maximum speed of 15 ft/second
    @param speed: The magnitude of the velocity in ft/sec
    @return bool
    """
    if speed > 15.0:
        return True
    else:
        return False

def plot_arrow(x, y, orientation):
    """
    Plot the arrow on the top of the robot. Arrow points 
    to +y-direction of the robot (i.e. towards the front 
    center part of the robot). It is centered on the 
    vehicle reference point.
    @param x: x-coordinate of the vehicle reference point
    @param y: y-coordinate of the vehicle reference point
    @param orientation: orientation of the vehicle 
        reference point in radians
    """
    # Clear datapoints if they exist
    try:
        for datapoints in ax.get_lines():
            datapoints.remove()
    except:
        pass

    # Plot the arrow
    plt.plot(x, y, marker=(3, 0, math.degrees(
        orientation)), markersize=20, color="black")

def plot_grid(x, y):
    """
    Plot the grid. 
    @param x: x-coordinate of the center of the grid.
    @param y: y-coordinate of the center of the grid
    """
    global x_axis_min, x_axis_max, y_axis_min, y_axis_max

    # Set the x and y limits of the grid.
    x_axis_max = x + (ENV_WIDTH / 2.0) + X_TICK_SPACING
    x_axis_min = x - (ENV_WIDTH / 2.0)
    y_axis_max = y + (ENV_LENGTH / 2.0) + Y_TICK_SPACING
    y_axis_min = y - (ENV_LENGTH / 2.0)
    ax.set(xlim=(x_axis_min, x_axis_max), ylim=(y_axis_min, 
        y_axis_max))

    # Each square on the grid is 6inch by 
    # 6inch (6inch = 0.5 feet)
    ax.set_xticks(np.arange(x_axis_min, x_axis_max, 
        X_TICK_SPACING))
    ax.set_yticks(np.arange(y_axis_min, y_axis_max, 
        Y_TICK_SPACING))
    ax.grid(True)

    turn_off_tick_labels()

def plot_line(x1, y1, direction):
    """
    Show the user defined path as a red line
    @param x1: x-coordinate of the start point of the line
    @param y1: y-coordinate of the start point of the line
    @direction: Direction of travel of the vehicle
        reference point in radians
    """
    # Arbitrary-chosen line length
    line_length = 2.0 * math.sqrt(2.0)

    x2 = (line_length * math.cos(direction))
    x2 = x1 + x2
    y2 = (line_length * math.sin(direction))
    y2 = y1 + y2

    plt.plot([x1, x2], [y1, y2], color='red', 
             linestyle='-', linewidth=2)  

def plot_path_traveled(x_values, y_values):
    """
    Show the path traveled by the robot.
    @param x_values list: List of x values
    @param y_values list: List of y values
    """
    plt.plot(x_values, y_values, color='green', 
             linestyle='-', linewidth=2)    

def plot_robot(x, y, orientation):
    """
    Plot the robot on the grid.    
    Rotate lower left coordinate of the robot based on 
    vehicle reference point's orientation.
    This equation gives the lower left coordinate's new 
        position when rotated around the origin (x=0,y=0):
        X = x*cos(θ) - y*sin(θ)
        Y = x*sin(θ) + y*cos(θ)
    @param x: x-coordinate of the vehicle reference point
    @param y: y-coordinate of the vehicle reference point
    @param orientation: orientation of the vehicle 
        reference point in radians
    """    
    global rect

    # Remove the existing rectangle if it exists
    try:
        rect.remove()
    except:
        pass

    rect_x_pos = ((-ROBOT_WIDTH/2.0) * math.cos(
        orientation)) - ((-ROBOT_LENGTH/2.0) * math.sin(
        orientation))
    rect_y_pos = ((-ROBOT_WIDTH/2.0) * math.sin(
        orientation)) + ((-ROBOT_LENGTH/2.0) * math.cos(
        orientation))

    # Translate lower left coordinate of the robot so it 
    #   is relative to the vehicle reference point
    rect_x_pos = rect_x_pos + x
    rect_y_pos = rect_y_pos + y

    # Update the robot's position and orientation
    rect = patches.Rectangle((rect_x_pos,rect_y_pos),
        ROBOT_WIDTH,ROBOT_LENGTH, math.degrees(
        orientation),lw=3,ec='black', fc='orange')

    # Add the rectangle to the Axes
    ax.add_patch(rect)

def reset():
    """
    This method resets the robot and grid to the origin
    """
    global hist_x_vals, hist_y_vals
    global x_pos_ref, y_pos_ref, vehicle_angle_ref
    global circle1, this_rect

    plot_grid(0,0)
    plot_robot(0, 0, math.radians(0))
    plot_arrow(0, 0, math.radians(0))

    hist_x_vals.clear()
    hist_y_vals.clear()

    x_pos_ref = 0.0
    y_pos_ref = 0.0
    vehicle_angle_ref = 0.0

    hist_x_vals.append(0)
    hist_y_vals.append(0)

    # Remove circle1 if it exists on the plot
    try:
        circle1.set_radius(0)
    except:
        pass

    # Remove this_rect if it exists on the plot
    try:
        this_rect.remove()
    except:
        pass

    # Vehicle position display
    veh_pos_label = tk.Label(window, 
        text = ("Vehicle Position"))
    veh_pos_label.grid(row=2, column=4, padx=5)

    # Add new position values to display window
    veh_x_pos_label = tk.Label(window, 
        text = ("X: " + str(round(0.0,3)) + " feet"))
    veh_x_pos_label.grid(row=3, column=4, padx=5)

    veh_y_pos_label = tk.Label(window, 
        text = ("Y: " + str(round(0.0,3)) + " feet"))
    veh_y_pos_label.grid(row=4, column=4, padx=5)

    veh_orientation_label = tk.Label(window, 
        text = ("Orientation: " + str(
        round(0.0,3)) + " degrees"))
    veh_orientation_label.grid(row=5, column=4, padx=5)

    # Wheel Rotation Rates display
    wheel_rot_rates_label = tk.Label(window, 
        text = ("Wheel Rotation Rates"))
    wheel_rot_rates_label.grid(row=6, column=4, padx=5)

    # Add new rotation rates to display window
    wheel_1_rot_label = tk.Label(window, 
        text = ("Wheel 1: " + str(round(0.0,3)) + " degrees/s"))
    wheel_1_rot_label.grid(row=7, column=4, padx=5)

    wheel_2_rot_label = tk.Label(window, 
        text = ("Wheel 2: " + str(round(0.0,3)) + " degrees/s"))
    wheel_2_rot_label.grid(row=8, column=4, padx=5)

    wheel_3_rot_label = tk.Label(window, 
        text = ("Wheel 3: " + str(round(0.0,3)) + " degrees/s"))
    wheel_3_rot_label.grid(row=9, column=4, padx=5)

    wheel_4_rot_label = tk.Label(window, 
        text = ("Wheel 4: " + str(round(0.0,3)) + " degrees/s"))
    wheel_4_rot_label.grid(row=10, column=4, padx=5)

    # Robot Velocity Display
    robot_velocity_label = tk.Label(window, 
        text = ("Robot Velocity (Local)"))
    robot_velocity_label.grid(row=11, column=4, padx=5)

    robot_velocity_x_label = tk.Label(window, 
        text = ("Velocity X: " + str(round(0.0,3)) + " ft/s"))
    robot_velocity_x_label.grid(row=12, column=4, padx=5)

    robot_velocity_y_label = tk.Label(window, 
        text = ("Velocity Y: " + str(round(0.0,3)) + " ft/s"))
    robot_velocity_y_label.grid(row=13, column=4, padx=5)

def stop():
    """
    This method stops the current processes.
    """
    global running_control_robot_body
    global running_control_robot_wheels
    running_control_robot_body = False
    running_control_robot_wheels = False

def turn_off_tick_labels():
    """
    Turn off the tick labels if desired.
    """
    ax.set_yticklabels([])
    ax.set_xticklabels([])

##################### Control Methods #####################
def start_control_robot_body():
    """
    This method starts the control_robot_body method
    """
    global running_control_robot_body
    running_control_robot_body = True

def control_robot_body(direction = 45.0, speed = 2.5, 
                       rotation_rate = 0.0):
    """
    The user can specify the direction, speed, and rotation
    rate of the vehicle reference point.
    @param direction: The direction of the vehicle 
        reference point in degrees, measured from the 
        vehicle's positive x-axis
    @param speed: The magnitude of the velocity in ft/sec
    @param rotation_rate: Rotation rate in degrees/sec, 
        going in the counter-clockwise direction
    """
    global hist_x_vals, hist_y_vals
    global x_pos_ref, y_pos_ref, vehicle_angle_ref
 
    if(running_control_robot_body):
        # Time interval in seconds
        dt = 0.25

        # Method will not run if speed entered is >15 ft/s
        if (is_too_fast(speed)):
            # Error Messages
            print("Error: Maximum speed is 15 " +
	            "ft/s.\nPlease increase the deadline.\n\n" +
	        "Speed = " + str(speed) + " ft/s")

            error_label = tk.Label(window, 
                text = ("Error Log\n ("+ str(time.strftime(
                "%Y-%m-%d %H:%M:%S", time.localtime(
                ))) + ")\n Maximum speed is 15 " +
                "ft/s.\nPlease reduce the speed.\n" +
                "Speed = " + str(speed) + " ft/s"))
            error_label.grid(row=14, column=4, 
                padx=5, pady=25)
            stop()

    if(running_control_robot_body):

        x_initial = x_pos_ref
        y_initial = y_pos_ref
        vehicle_angle_ref_initial = vehicle_angle_ref

        # Convert direction (local) into direction (global)
        direction_global = direction + vehicle_angle_ref

        # Calculate velocity in the x-direction in the
        # global reference frame
        v_x_global = (speed) * math.cos(
            math.radians(direction_global))

        # Calculate velocity in the y-direction in the
        # global reference frame
        v_y_global = (speed) * math.sin(
            math.radians(direction_global))

        # Determine the new x-coordinate of the vehicle
        # reference point
        x_pos_ref = x_initial + (v_x_global * dt)

        # Determine the new y-coordinate of the vehicle
        # reference point
        y_pos_ref = y_initial + (v_y_global * dt)

        # Determine the new orientation of the vehicle
        # reference point
        vehicle_angle_ref = vehicle_angle_ref_initial + (
            rotation_rate * dt)

        # Reposition grid if we are close to the edge
        if (is_close_to_edge(x_pos_ref, y_pos_ref)):
            plot_grid(x_pos_ref, y_pos_ref)

        # Update user-defined path
        plot_line(x_initial, 
            y_initial, math.radians(direction_global))
        plt.pause(dt)

        # Move robot to new position
        plot_robot(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))
        plot_arrow(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))

        # Update path traveled by robot
        hist_x_vals.append(x_pos_ref)
        hist_y_vals.append(y_pos_ref)
        plot_path_traveled(hist_x_vals, hist_y_vals)

        # Calculate velocity in the x-direction in the
        # local reference frame
        v_x_local = (speed) * math.cos(
            math.radians(direction))

        # Calculate velocity in the y-direction in the
        # local reference frame
        v_y_local = (speed) * math.sin(
            math.radians(direction))

        # Update wheel rotation rates
        rot1, rot2, rot3, rot4 = get_wheel_rot_rates(
            v_x_local, v_y_local, rotation_rate)

        # Vehicle position display
        print("VEHICLE POSITION")
        print("X: " + str(x_pos_ref) + " feet")
        print("Y: " + str(y_pos_ref) + " feet")
        print("Orientation: " + str(vehicle_angle_ref) +
                      " degrees\n")

        # Wheel rate display
        print("WHEEL ROTATION RATES")
        print("Wheel 1: " + str(rot1) + " degrees/s")
        print("Wheel 2: " + str(rot2) + " degrees/s")
        print("Wheel 3: " + str(rot3) + " degrees/s")
        print("Wheel 4: " + str(rot4) + " degrees/s\n")

        # Robot velocity display
        print("ROBOT VELOCITY (LOCAL)")
        print("V_X: " + str(v_x_local) + " ft/s")
        print("V_Y: " + str(v_y_local) + " ft/s\n\n")


        # Vehicle position display
        veh_pos_label = tk.Label(window, 
            text = ("Vehicle Position"))
        veh_pos_label.grid(row=2, column=4, padx=5)

        # Add new position values to display window
        veh_x_pos_label = tk.Label(window, 
            text = ("X: " + str(round(x_pos_ref,3)) + " feet"))
        veh_x_pos_label.grid(row=3, column=4, padx=5)

        veh_y_pos_label = tk.Label(window, 
            text = ("Y: " + str(round(y_pos_ref,3)) + " feet"))
        veh_y_pos_label.grid(row=4, column=4, padx=5)

        veh_orientation_label = tk.Label(window, 
            text = ("Orientation: " + str(
            round(vehicle_angle_ref,3)) + " degrees"))
        veh_orientation_label.grid(row=5, column=4, padx=5)

        # Wheel Rotation Rates display
        wheel_rot_rates_label = tk.Label(window, 
            text = ("Wheel Rotation Rates"))
        wheel_rot_rates_label.grid(row=6, column=4, padx=5)

        # Add new rotation rates to display window
        wheel_1_rot_label = tk.Label(window, 
            text = ("Wheel 1: " + str(round(rot1,3)) + " degrees/s"))
        wheel_1_rot_label.grid(row=7, column=4, padx=5)

        wheel_2_rot_label = tk.Label(window, 
            text = ("Wheel 2: " + str(round(rot2,3)) + " degrees/s"))
        wheel_2_rot_label.grid(row=8, column=4, padx=5)

        wheel_3_rot_label = tk.Label(window, 
            text = ("Wheel 3: " + str(round(rot3,3)) + " degrees/s"))
        wheel_3_rot_label.grid(row=9, column=4, padx=5)

        wheel_4_rot_label = tk.Label(window, 
            text = ("Wheel 4: " + str(round(rot4,3)) + " degrees/s"))
        wheel_4_rot_label.grid(row=10, column=4, padx=5)

        # Robot Velocity Display
        robot_velocity_label = tk.Label(window, 
            text = ("Robot Velocity (Local)"))
        robot_velocity_label.grid(row=11, column=4, padx=5)

        robot_velocity_x_label = tk.Label(window, 
            text = ("Velocity X: " + str(round(v_x_local,3)) + " ft/s"))
        robot_velocity_x_label.grid(row=12, column=4, padx=5)

        robot_velocity_y_label = tk.Label(window, 
            text = ("Velocity Y: " + str(round(v_y_local,3)) + " ft/s"))
        robot_velocity_y_label.grid(row=13, column=4, padx=5)

        plt.pause(dt)    
  
    window.after(1, lambda: control_robot_body(
        float(direction_entry.get()),
        float(speed_entry.get()),
        float(rot_rate_entry.get())))

def start_control_robot_wheels():
    """
    This method starts the control_robot_wheels method
    """
    global running_control_robot_wheels
    running_control_robot_wheels = True

def stop_control_robot_wheels(event):
    """
    This method stops the control_robot_wheels process
    upon either a mouse click on the plot or a 
    keyboard button push.
    """
    global running_control_robot_wheels
    running_control_robot_wheels = False
        
def control_robot_wheels(rot1 = -7.0, rot2 = 0.0, 
    rot3 = 0.0, rot4 = -7.0):
    """
    The user shall be able to specify the rotation rate of
    each wheel.
    @param rot1: Rotation rate of wheel 1 in degrees/sec
    @param rot2: Rotation rate of wheel 2 in degrees/sec
    @param rot3: Rotation rate of wheel 3 in degrees/sec
    @param rot4: Rotation rate of wheel 4 in degrees/sec
    """
    global hist_x_vals, hist_y_vals
    global x_pos_ref, y_pos_ref, vehicle_angle_ref

    # In this mode alone, any mouse or keyboard button push
    # will be considered a stop command.
    # Must click directly on the plot.
    fig.canvas.mpl_connect('button_press_event', 
        stop_control_robot_wheels)
    fig.canvas.mpl_connect('key_press_event', 
        stop_control_robot_wheels)

    if(running_control_robot_wheels):

        # Time interval in seconds
        dt = 0.25

        # Get current robot motion
        v_x_local, v_y_local, rotation_rate = (
            get_robot_motion_values(rot1, rot2, rot3, rot4))

        speed = get_velocity_magnitude(v_x_local, v_y_local)

        # Method will not run if speed entered is >15 ft/s
        if (is_too_fast(speed)):
            # Error Messages
            print("Error: Maximum speed is 15 " +
	            "ft/s.\nPlease increase the deadline.\n\n" +
	            "Speed = " + str(speed) + " ft/s")
            error_label = tk.Label(window, 
                text = ("Error Log\n ("+ str(time.strftime(
                "%Y-%m-%d %H:%M:%S", time.localtime(
                ))) + ")\n Maximum speed is 15 " +
                "ft/s.\nPlease reduce the wheel rotation rates.\n" +
                "Speed = " + str(speed) + " ft/s"))
            error_label.grid(row=14, column=4, 
                padx=5, pady=25)
            stop()

    if(running_control_robot_wheels):

        v_x_global, v_y_global = (
            convert_local_velocity_to_global(
            v_x_local, v_y_local))

        # Calculate the direction of travel of the vehicle 
        # reference point
        direction_global = math.degrees(math.atan2(
            v_y_global,v_x_global))

        x_initial = x_pos_ref
        y_initial = y_pos_ref
        vehicle_angle_ref_initial = vehicle_angle_ref

        # Determine the new x-coordinate of the vehicle
        # reference point
        x_pos_ref = x_initial + (v_x_global * dt)

        # Determine the new y-coordinate of the vehicle
        # reference point
        y_pos_ref = y_initial + (v_y_global * dt)

        # Determine the new orientation of the vehicle
        # reference point
        vehicle_angle_ref = vehicle_angle_ref_initial + (
            rotation_rate * dt)

        # Reposition grid if we are close to the edge
        if (is_close_to_edge(x_pos_ref, y_pos_ref)):
            plot_grid(x_pos_ref, y_pos_ref)

        # Update user-defined path
        plot_line(x_initial, y_initial, math.radians(
            direction_global))
        plt.pause(dt)

        # Move robot to new position
        plot_robot(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))
        plot_arrow(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))

        # Update path traveled by robot
        hist_x_vals.append(x_pos_ref)
        hist_y_vals.append(y_pos_ref)
        plot_path_traveled(hist_x_vals, hist_y_vals)

        # Vehicle position display
        print("VEHICLE POSITION")
        print("X: " + str(x_pos_ref) + " feet")
        print("Y: " + str(y_pos_ref) + " feet")
        print("Orientation: " + str(vehicle_angle_ref) +
                      " degrees\n")

        # Wheel rate display
        print("WHEEL ROTATION RATES")
        print("Wheel 1: " + str(rot1) + " degrees/s")
        print("Wheel 2: " + str(rot2) + " degrees/s")
        print("Wheel 3: " + str(rot3) + " degrees/s")
        print("Wheel 4: " + str(rot4) + " degrees/s\n")

        # Robot velocity display
        print("ROBOT VELOCITY (LOCAL)")
        print("V_X: " + str(v_x_local) + " ft/s")
        print("V_Y: " + str(v_y_local) + " ft/s\n\n")

        # Vehicle position display
        veh_pos_label = tk.Label(window, 
            text = ("Vehicle Position"))
        veh_pos_label.grid(row=2, column=4, padx=5)

        # Add new position values to display window
        veh_x_pos_label = tk.Label(window, 
            text = ("X: " + str(round(x_pos_ref,3)) + " feet"))
        veh_x_pos_label.grid(row=3, column=4, padx=5)

        veh_y_pos_label = tk.Label(window, 
            text = ("Y: " + str(round(y_pos_ref,3)) + " feet"))
        veh_y_pos_label.grid(row=4, column=4, padx=5)

        veh_orientation_label = tk.Label(window, 
            text = ("Orientation: " + str(
            round(vehicle_angle_ref,3)) + " degrees"))
        veh_orientation_label.grid(row=5, column=4, padx=5)

        # Wheel Rotation Rates display
        wheel_rot_rates_label = tk.Label(window, 
            text = ("Wheel Rotation Rates"))
        wheel_rot_rates_label.grid(row=6, column=4, padx=5)

        # Add new rotation rates to display window
        wheel_1_rot_label = tk.Label(window, 
            text = ("Wheel 1: " + str(round(rot1,3)) + " degrees/s"))
        wheel_1_rot_label.grid(row=7, column=4, padx=5)

        wheel_2_rot_label = tk.Label(window, 
            text = ("Wheel 2: " + str(round(rot2,3)) + " degrees/s"))
        wheel_2_rot_label.grid(row=8, column=4, padx=5)

        wheel_3_rot_label = tk.Label(window, 
            text = ("Wheel 3: " + str(round(rot3,3)) + " degrees/s"))
        wheel_3_rot_label.grid(row=9, column=4, padx=5)

        wheel_4_rot_label = tk.Label(window, 
            text = ("Wheel 4: " + str(round(rot4,3)) + " degrees/s"))
        wheel_4_rot_label.grid(row=10, column=4, padx=5)

        # Robot Velocity Display
        robot_velocity_label = tk.Label(window, 
            text = ("Robot Velocity (Local)"))
        robot_velocity_label.grid(row=11, column=4, padx=5)

        robot_velocity_x_label = tk.Label(window, 
            text = ("Velocity X: " + str(round(v_x_local,3)) + " ft/s"))
        robot_velocity_x_label.grid(row=12, column=4, padx=5)

        robot_velocity_y_label = tk.Label(window, 
            text = ("Velocity Y: " + str(round(v_y_local,3)) + " ft/s"))
        robot_velocity_y_label.grid(row=13, column=4, padx=5)

        plt.pause(dt)  

    window.after(1, lambda: control_robot_wheels(
        float(rot_rate1_entry.get()), 
        float(rot_rate2_entry.get()), 
        float(rot_rate3_entry.get()), 
        float(rot_rate4_entry.get())))

def point_execution_no_wp(x_final = 5.0, y_final = 5.0, 
        orientation_final = -45.0, deadline =  5.0):
    """
    The user can specify a straight line path to an
    end point, including a desired end orientation.
    No waypoints between start and endpoints.
    @param x_final: x-coordinate of the desired end point
    @param y_final: y-coordinate of the desired end point
    @param orientation_final: Desired end orientation in
        degrees, going counter-clockwise from the x-axis
        of the global reference frame
    @param deadline: Time taken to get to end point in
        seconds
    """
    global hist_x_vals, hist_y_vals
    global x_pos_ref, y_pos_ref, vehicle_angle_ref

    distance = get_distance_btw_points(x_pos_ref,y_pos_ref,
        x_final,y_final)

    speed = get_speed(distance,deadline)

    # Method will not run if speed entered is >15 ft/s
    if (is_too_fast(speed)):
        # Error Messages
        print("Error: Maximum speed is 15 " +
	        "ft/s.\nPlease increase the deadline.\n\n" +
	        "Speed = " + str(speed) + " ft/s")
        error_label = tk.Label(window, 
            text = ("Error Log\n ("+ str(time.strftime(
            "%Y-%m-%d %H:%M:%S", time.localtime(
            ))) + ")\n Maximum speed is 15 " +
            "ft/s.\nPlease increase the deadline.\n" +
            "Speed = " + str(speed) + " ft/s"))
        error_label.grid(row=14, column=4, 
            padx=5, pady=25)
        stop()

    # Calculate rotation rate in degrees/sec
    rotation_rate = (orientation_final - (
        vehicle_angle_ref))/(deadline)

    # Number of frames to reach deadline
    no_of_frames = 5

    # Time interval in seconds
    dt = (deadline / no_of_frames)

    # Calculate the direction of travel of the vehicle 
    # reference point in degrees
    direction_global = math.degrees(math.atan2(
        (y_final - y_pos_ref),(x_final - x_pos_ref)))

    # Plot user-defined path
    plt.plot([x_pos_ref, x_final], [y_pos_ref, y_final], 
             color='red', linestyle='-', linewidth=2)  

    plt.pause(0.25)

    # Calculate velocity in the x-direction in the
    # global reference frame
    v_x_global = (speed) * math.cos(
        math.radians(direction_global))

    # Calculate velocity in the y-direction in the
    # global reference frame
    v_y_global = (speed) * math.sin(
        math.radians(direction_global))

    for num in range(no_of_frames):

        x_initial = x_pos_ref
        y_initial = y_pos_ref
        vehicle_angle_ref_initial = vehicle_angle_ref

        # Determine the new x-coordinate of the vehicle
        # reference point
        x_pos_ref = x_initial + (v_x_global * dt)

        # Determine the new y-coordinate of the vehicle
        # reference point
        y_pos_ref = y_initial + (v_y_global * dt)

        # Determine the new orientation of the vehicle
        # reference point
        vehicle_angle_ref = vehicle_angle_ref_initial + (
            rotation_rate * dt)

        plt.pause(dt)
       
        # Reposition grid if we are close to the edge
        if (is_close_to_edge(x_pos_ref, y_pos_ref)):
            plot_grid(x_pos_ref, y_pos_ref)

        # Move robot to new position
        plot_robot(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))
        plot_arrow(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))

        # Update path traveled by robot
        hist_x_vals.append(x_pos_ref)
        hist_y_vals.append(y_pos_ref)
        plot_path_traveled(hist_x_vals, hist_y_vals)

        # Convert direction (global) into direction (local)
        direction = direction_global - vehicle_angle_ref
        
        # Calculate velocity in the x-direction in the
        # local reference frame
        v_x_local = (speed) * math.cos(
            math.radians(direction))

        # Calculate velocity in the y-direction in the
        # local reference frame
        v_y_local = (speed) * math.sin(
            math.radians(direction))

        # Update wheel rotation rates
        rot1, rot2, rot3, rot4 = get_wheel_rot_rates(
            v_x_local, v_y_local, rotation_rate)

        # Update user-defined path
        plt.plot([x_pos_ref, x_final], [y_pos_ref,y_final], 
             color='red', linestyle='-', linewidth=2)

        # Vehicle position display
        print("VEHICLE POSITION")
        print("X: " + str(x_pos_ref) + " feet")
        print("Y: " + str(y_pos_ref) + " feet")
        print("Orientation: " + str(vehicle_angle_ref) +
                      " degrees\n")

        # Wheel rate display
        print("WHEEL ROTATION RATES")
        print("Wheel 1: " + str(rot1) + " degrees/s")
        print("Wheel 2: " + str(rot2) + " degrees/s")
        print("Wheel 3: " + str(rot3) + " degrees/s")
        print("Wheel 4: " + str(rot4) + " degrees/s\n")

        # Robot velocity display
        print("ROBOT VELOCITY (LOCAL)")
        print("V_X: " + str(v_x_local) + " ft/s")
        print("V_Y: " + str(v_y_local) + " ft/s\n\n")


        # Vehicle position display
        veh_pos_label = tk.Label(window, 
            text = ("Vehicle Position"))
        veh_pos_label.grid(row=2, column=4, padx=5)

        # Add new position values to display window
        veh_x_pos_label = tk.Label(window, 
            text = ("X: " + str(round(x_pos_ref,3)) + " feet"))
        veh_x_pos_label.grid(row=3, column=4, padx=5)

        veh_y_pos_label = tk.Label(window, 
            text = ("Y: " + str(round(y_pos_ref,3)) + " feet"))
        veh_y_pos_label.grid(row=4, column=4, padx=5)

        veh_orientation_label = tk.Label(window, 
            text = ("Orientation: " + str(
            round(vehicle_angle_ref,3)) + " degrees"))
        veh_orientation_label.grid(row=5, column=4, padx=5)

        # Wheel Rotation Rates display
        wheel_rot_rates_label = tk.Label(window, 
            text = ("Wheel Rotation Rates"))
        wheel_rot_rates_label.grid(row=6, column=4, padx=5)

        # Add new rotation rates to display window
        wheel_1_rot_label = tk.Label(window, 
            text = ("Wheel 1: " + str(round(rot1,3)) + " degrees/s"))
        wheel_1_rot_label.grid(row=7, column=4, padx=5)

        wheel_2_rot_label = tk.Label(window, 
            text = ("Wheel 2: " + str(round(rot2,3)) + " degrees/s"))
        wheel_2_rot_label.grid(row=8, column=4, padx=5)

        wheel_3_rot_label = tk.Label(window, 
            text = ("Wheel 3: " + str(round(rot3,3)) + " degrees/s"))
        wheel_3_rot_label.grid(row=9, column=4, padx=5)

        wheel_4_rot_label = tk.Label(window, 
            text = ("Wheel 4: " + str(round(rot4,3)) + " degrees/s"))
        wheel_4_rot_label.grid(row=10, column=4, padx=5)

        # Robot Velocity Display
        robot_velocity_label = tk.Label(window, 
            text = ("Robot Velocity (Local)"))
        robot_velocity_label.grid(row=11, column=4, padx=5)

        robot_velocity_x_label = tk.Label(window, 
            text = ("Velocity X: " + str(round(v_x_local,3)) + " ft/s"))
        robot_velocity_x_label.grid(row=12, column=4, padx=5)

        robot_velocity_y_label = tk.Label(window, 
            text = ("Velocity Y: " + str(round(v_y_local,3)) + " ft/s"))
        robot_velocity_y_label.grid(row=13, column=4, padx=5)

def point_execution_with_wp(x_wp1 = 5.0, y_wp1 = 5.0, 
        x_wp2 = 5.0, y_wp2 = -5.0, 
        x_wp3 = -5.0, y_wp3 = 5.0,
        x_final = -5.0, y_final = -5.0, 
        orientation_final = 90.0, deadline = 5.0):
    """
    The user can specify a straight line path to an
    end point, including a desired end orientation.
    Waypoints between start and endpoints can be specified.
    @param x_wp1: x-coordinate of waypoint 1
    @param y_wp1: y-coordinate of waypoint 1
    @param x_wp2: x-coordinate of waypoint 2
    @param y_wp2: y-coordinate of waypoint 2
    @param x_wp3: x-coordinate of waypoint 3
    @param y_wp3: y-coordinate of waypoint 3
    @param x_final: x-coordinate of end point
    @param y_final: y-coordinate of end point
    @param orientation_final: Desired end orientation in 
        degrees.
    @param deadline float: Time taken to get from current 
        point to end point in seconds.
    """
    global hist_x_vals, hist_y_vals
    global x_pos_ref, y_pos_ref, vehicle_angle_ref

    # List of all x and y values along the path
    x_list = [x_pos_ref, x_wp1, x_wp2, x_wp3, x_final]
    y_list = [y_pos_ref, y_wp1, y_wp2, y_wp3, y_final]

    # Number of legs on the path
    no_of_legs = len(x_list) - 1

    # Keep track of the distances of each leg of the trip
    distance_list = []

    # Calculate the distance of each leg of the trip in ft
    for idx in range(no_of_legs):
        distance_list.append(get_distance_btw_points(
            x_list[idx],y_list[idx],x_list[idx + 1],y_list[
            idx + 1]))

    total_distance = sum(distance_list)

    speed = get_speed(total_distance,deadline)

    # Method will not run if speed entered is >15 ft/s
    if (is_too_fast(speed)):
        print("Error: Maximum speed is 15 " +
	        "ft/s.\nPlease increase the deadline.\n\n" +
	        "Speed = " + str(speed) + " ft/s")
        error_label = tk.Label(window, 
            text = ("Error Log\n ("+ str(time.strftime(
            "%Y-%m-%d %H:%M:%S", time.localtime(
            ))) + ")\n Maximum speed is 15 " +
            "ft/s.\nPlease increase the deadline.\n" +
            "Speed = " + str(speed) + " ft/s"))
        error_label.grid(row=14, column=4, 
            padx=5, pady=25)
        stop()

    # Calculate rotation rate in degrees/sec
    rotation_rate = (orientation_final - (
        vehicle_angle_ref))/(deadline)

    # Calculate the duration of each leg in seconds
    deadline_list = []

    for idx in range(no_of_legs):
        deadline_list.append((distance_list[
            idx]/total_distance) * deadline)

    # Number of frames per leg
    no_of_frames_per_leg = 5

    # Time intervals in seconds for each leg
    dt_list = []

    for idx in range(no_of_legs):
        dt_list.append(deadline_list[idx]/(
            no_of_frames_per_leg))

    # Move through each leg of the trip
    for idx in range(no_of_legs):

        # Number of frames per leg
        no_of_frames_per_leg = 5

        # Calculate the direction of travel of the vehicle 
        # reference point in degrees
        direction_global = math.degrees(math.atan2(
            (y_list[idx + 1] - y_list[idx]),(x_list[
            idx + 1] - x_list[idx])))

        # Calculate velocity in the x-direction in the
        # global reference frame
        v_x_global = (speed) * math.cos(
            math.radians(direction_global))

        # Calculate velocity in the y-direction in the
        # global reference frame
        v_y_global = (speed) * math.sin(
            math.radians(direction_global))

        for num in range(no_of_frames_per_leg):

            x_initial = x_pos_ref
            y_initial = y_pos_ref
            vehicle_angle_ref_initial = vehicle_angle_ref

            # Determine the new x-coordinate of the vehicle
            # reference point
            x_pos_ref = x_initial + (v_x_global * dt_list[
                idx])

            # Determine the new y-coordinate of the vehicle
            # reference point
            y_pos_ref = y_initial + (v_y_global * dt_list[
                idx])

            # Determine the new orientation of the vehicle
            # reference point
            vehicle_angle_ref = (
                vehicle_angle_ref_initial + (
                rotation_rate * dt_list[idx]))

            # Reposition grid if we are close to the edge
            if (is_close_to_edge(x_pos_ref, y_pos_ref)):
                plot_grid(x_pos_ref, y_pos_ref)

            # Move robot to new position
            plot_robot(x_pos_ref,y_pos_ref,math.radians(
                vehicle_angle_ref))
            plot_arrow(x_pos_ref,y_pos_ref,math.radians(
                vehicle_angle_ref))

            # Update path traveled by robot
            hist_x_vals.append(x_pos_ref)
            hist_y_vals.append(y_pos_ref)
            plot_path_traveled(hist_x_vals, hist_y_vals)

            # Convert direction (global) into direction (local)
            direction = direction_global - vehicle_angle_ref

            # Calculate velocity in the x-direction in the
            # local reference frame
            v_x_local = (speed) * math.cos(
                math.radians(direction))

            # Calculate velocity in the y-direction in the
            # local reference frame
            v_y_local = (speed) * math.sin(
                math.radians(direction))

            # Update wheel rotation rates
            rot1, rot2, rot3, rot4 = get_wheel_rot_rates(
                v_x_local, v_y_local, rotation_rate)

            # Vehicle position display
            print("VEHICLE POSITION")
            print("X: " + str(x_pos_ref) + " feet")
            print("Y: " + str(y_pos_ref) + " feet")
            print("Orientation: " + str(vehicle_angle_ref) +
                          " degrees\n")

            # Wheel rate display
            print("WHEEL ROTATION RATES")
            print("Wheel 1: " + str(rot1) + " degrees/s")
            print("Wheel 2: " + str(rot2) + " degrees/s")
            print("Wheel 3: " + str(rot3) + " degrees/s")
            print("Wheel 4: " + str(rot4) + " degrees/s\n")

            # Robot velocity display
            print("ROBOT VELOCITY (LOCAL)")
            print("V_X: " + str(v_x_local) + " ft/s")
            print("V_Y: " + str(v_y_local) + " ft/s\n\n")

            # Vehicle position display
            veh_pos_label = tk.Label(window, 
                text = ("Vehicle Position"))
            veh_pos_label.grid(row=2, column=4, padx=5)

            # Add new position values to display window
            veh_x_pos_label = tk.Label(window, 
                text = ("X: " + str(round(x_pos_ref,3)) + " feet"))
            veh_x_pos_label.grid(row=3, column=4, padx=5)

            veh_y_pos_label = tk.Label(window, 
                text = ("Y: " + str(round(y_pos_ref,3)) + " feet"))
            veh_y_pos_label.grid(row=4, column=4, padx=5)

            veh_orientation_label = tk.Label(window, 
                text = ("Orientation: " + str(
                round(vehicle_angle_ref,3)) + " degrees"))
            veh_orientation_label.grid(row=5, column=4, padx=5)

            # Wheel Rotation Rates display
            wheel_rot_rates_label = tk.Label(window, 
                text = ("Wheel Rotation Rates"))
            wheel_rot_rates_label.grid(row=6, column=4, padx=5)

            # Add new rotation rates to display window
            wheel_1_rot_label = tk.Label(window, 
                text = ("Wheel 1: " + str(round(rot1,3)) + " degrees/s"))
            wheel_1_rot_label.grid(row=7, column=4, padx=5)

            wheel_2_rot_label = tk.Label(window, 
                text = ("Wheel 2: " + str(round(rot2,3)) + " degrees/s"))
            wheel_2_rot_label.grid(row=8, column=4, padx=5)

            wheel_3_rot_label = tk.Label(window, 
                text = ("Wheel 3: " + str(round(rot3,3)) + " degrees/s"))
            wheel_3_rot_label.grid(row=9, column=4, padx=5)

            wheel_4_rot_label = tk.Label(window, 
                text = ("Wheel 4: " + str(round(rot4,3)) + " degrees/s"))
            wheel_4_rot_label.grid(row=10, column=4, padx=5)

            # Robot Velocity Display
            robot_velocity_label = tk.Label(window, 
                text = ("Robot Velocity (Local)"))
            robot_velocity_label.grid(row=11, column=4, padx=5)

            robot_velocity_x_label = tk.Label(window, 
                text = ("Velocity X: " + str(round(v_x_local,3)) + " ft/s"))
            robot_velocity_x_label.grid(row=12, column=4, padx=5)

            robot_velocity_y_label = tk.Label(window, 
                text = ("Velocity Y: " + str(round(v_y_local,3)) + " ft/s"))
            robot_velocity_y_label.grid(row=13, column=4, padx=5)

            # Update user-defined path
            plt.plot([x_pos_ref, x_list[idx + 1]], [
                y_pos_ref,y_list[idx + 1]], color='red', 
                linestyle='-', linewidth=2)  

            plt.pause(dt_list[idx])  

def move_in_a_circle(radius = 2.0, direction = 45.0, 
        deadline = 5.0):
    """
    Vehicle can move in a circle with user-defined 
    radius and inclination (direction of circle center 
    from current vehicle position). 
    @param radius: Radius of the circle in feet
    @param direction: Direction of circle center
        from the vehicle reference point, measured
        from the vehicle's positive x-axis in degrees
    @param deadline float: Time taken to get from current 
        point to end point in seconds.
    """
    global hist_x_vals, hist_y_vals
    global x_pos_ref, y_pos_ref, vehicle_angle_ref
    global circle1

    # Rotation rate of vehicle reference point
    rotation_rate = 0.0

    # Convert direction (local) into direction (global)
    direction_global = direction + vehicle_angle_ref

    # x-coordinate of the center of the circle
    x_center = x_pos_ref + (radius) * math.cos(
        math.radians(direction_global))

    # y-coordinate of the center of the circle
    y_center = y_pos_ref + (radius) * math.sin(
        math.radians(direction_global))

    # Plot the circle path
    circle1 = plt.Circle((x_center, y_center), 
        radius, color="red", fill=False, lw=2)
    ax.add_artist(circle1)

    # Record the angle at which the vehicle reference point
    # is from the center of the circle in degrees
    starting_angle = math.degrees(math.atan2((
        y_pos_ref - y_center),(x_pos_ref - x_center)))

    # Convert negative angles to positive angles
    if starting_angle < 0:
        starting_angle += 360            

    # Calculate the total distance of travel in feet
    total_distance = 2 * math.pi * radius

    speed = get_speed(total_distance,deadline)

    # Method will not run if speed entered is >15 ft/s
    if (is_too_fast(speed)):
        print("Error: Maximum speed is 15 " +
	        "ft/s.\nPlease increase the deadline.\n\n" +
	        "Speed = " + str(speed) + " ft/s")
        error_label = tk.Label(window, 
            text = ("Error Log\n ("+ str(time.strftime(
            "%Y-%m-%d %H:%M:%S", time.localtime(
            ))) + ")\n Maximum speed is 15 " +
            "ft/s.\nPlease increase the deadline.\n" +
            "Speed = " + str(speed) + " ft/s"))
        error_label.grid(row=14, column=4, 
            padx=5, pady=25)
        stop() 

    # Number of individual movements along the circle path
    no_of_circle_legs = 25

    # Number of degrees per circle leg
    no_of_degrees_per_circle_leg = 360.0/no_of_circle_legs

    # Number of seconds per leg
    dt = deadline/no_of_circle_legs

    # Create a list of the angles at which the vehicle 
    # reference point is from the center of the circle
    # for a complete circle path (in degrees)
    angles_list = []

    for angle_count in range(no_of_circle_legs):
        starting_angle += no_of_degrees_per_circle_leg
        angles_list.append(starting_angle)

    # List of all x and y values along the path
    x_list = [x_pos_ref]
    y_list = [y_pos_ref]
    for element in angles_list:
        x_temp = radius * math.cos(math.radians(element))+ (
            x_center)
        y_temp = radius * math.sin(math.radians(element))+ (
            y_center)
        x_list.append(x_temp)
        y_list.append(y_temp)

    ax.add_artist(circle1)
    plt.pause(dt)

    # Move through each leg of the trip
    for idx in range(no_of_circle_legs):

        # Calculate the direction of travel of the vehicle 
        # reference point in degrees
        direction_global = math.degrees(math.atan2(
            (y_list[idx + 1] - y_list[idx]),(x_list[
            idx + 1] - x_list[idx])))
        
        # Calculate velocity in the x-direction in the
        # global reference frame
        v_x_global = (speed) * math.cos(
            math.radians(direction_global))

        # Calculate velocity in the y-direction in the
        # global reference frame
        v_y_global = (speed) * math.sin(
            math.radians(direction_global))

        x_initial = x_pos_ref
        y_initial = y_pos_ref
        vehicle_angle_ref_initial = vehicle_angle_ref

        # Determine the new x-coordinate of the vehicle
        # reference point
        x_pos_ref = x_initial + (v_x_global * dt)

        # Determine the new y-coordinate of the vehicle
        # reference point
        y_pos_ref = y_initial + (v_y_global * dt)

        # Reposition grid if we are close to the edge
        if (is_close_to_edge(x_pos_ref, y_pos_ref)):
            plot_grid(x_pos_ref, y_pos_ref)

        # Move robot to new position
        plot_robot(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))
        plot_arrow(x_pos_ref,y_pos_ref,math.radians(
            vehicle_angle_ref))

        # Update path traveled by robot
        hist_x_vals.append(x_pos_ref)
        hist_y_vals.append(y_pos_ref)
        plot_path_traveled(hist_x_vals, hist_y_vals)

        # Convert direction (global) into direction (local)
        direction = direction_global - vehicle_angle_ref

        # Calculate velocity in the x-direction in the
        # local reference frame
        v_x_local = (speed) * math.cos(
            math.radians(direction))

        # Calculate velocity in the y-direction in the
        # local reference frame
        v_y_local = (speed) * math.sin(
            math.radians(direction))

        # Update wheel rotation rates
        rot1, rot2, rot3, rot4 = get_wheel_rot_rates(
            v_x_local, v_y_local, rotation_rate)

        # Vehicle position display
        print("VEHICLE POSITION")
        print("X: " + str(x_pos_ref) + " feet")
        print("Y: " + str(y_pos_ref) + " feet")
        print("Orientation: " + str(vehicle_angle_ref) +
                      " degrees\n")

        # Wheel rate display
        print("WHEEL ROTATION RATES")
        print("Wheel 1: " + str(rot1) + " degrees/s")
        print("Wheel 2: " + str(rot2) + " degrees/s")
        print("Wheel 3: " + str(rot3) + " degrees/s")
        print("Wheel 4: " + str(rot4) + " degrees/s\n")

        # Robot velocity display
        print("ROBOT VELOCITY (LOCAL)")
        print("V_X: " + str(v_x_local) + " ft/s")
        print("V_Y: " + str(v_y_local) + " ft/s\n\n")

        # Vehicle position display
        veh_pos_label = tk.Label(window, 
            text = ("Vehicle Position"))
        veh_pos_label.grid(row=2, column=4, padx=5)

        # Add new position values to display window
        veh_x_pos_label = tk.Label(window, 
            text = ("X: " + str(round(x_pos_ref,3)) + " feet"))
        veh_x_pos_label.grid(row=3, column=4, padx=5)

        veh_y_pos_label = tk.Label(window, 
            text = ("Y: " + str(round(y_pos_ref,3)) + " feet"))
        veh_y_pos_label.grid(row=4, column=4, padx=5)

        veh_orientation_label = tk.Label(window, 
            text = ("Orientation: " + str(
            round(vehicle_angle_ref,3)) + " degrees"))
        veh_orientation_label.grid(row=5, column=4, padx=5)

        # Wheel Rotation Rates display
        wheel_rot_rates_label = tk.Label(window, 
            text = ("Wheel Rotation Rates"))
        wheel_rot_rates_label.grid(row=6, column=4, padx=5)

        # Add new rotation rates to display window
        wheel_1_rot_label = tk.Label(window, 
            text = ("Wheel 1: " + str(round(rot1,3)) + " degrees/s"))
        wheel_1_rot_label.grid(row=7, column=4, padx=5)

        wheel_2_rot_label = tk.Label(window, 
            text = ("Wheel 2: " + str(round(rot2,3)) + " degrees/s"))
        wheel_2_rot_label.grid(row=8, column=4, padx=5)

        wheel_3_rot_label = tk.Label(window, 
            text = ("Wheel 3: " + str(round(rot3,3)) + " degrees/s"))
        wheel_3_rot_label.grid(row=9, column=4, padx=5)

        wheel_4_rot_label = tk.Label(window, 
            text = ("Wheel 4: " + str(round(rot4,3)) + " degrees/s"))
        wheel_4_rot_label.grid(row=10, column=4, padx=5)

        # Robot Velocity Display
        robot_velocity_label = tk.Label(window, 
            text = ("Robot Velocity (Local)"))
        robot_velocity_label.grid(row=11, column=4, padx=5)

        robot_velocity_x_label = tk.Label(window, 
            text = ("Velocity X: " + str(round(v_x_local,3)) + " ft/s"))
        robot_velocity_x_label.grid(row=12, column=4, padx=5)

        robot_velocity_y_label = tk.Label(window, 
            text = ("Velocity Y: " + str(round(v_y_local,3)) + " ft/s"))
        robot_velocity_y_label.grid(row=13, column=4, padx=5)

        plt.pause(dt)  

def move_in_a_rectangle(length_in_ft = 5.0, 
        direction_of_opp_vertex = 25.0, deadline = 5.0):
    """
    Vehicle can move in a rectangle shape consisting of
    user-defined side lengths and inclination (direction of
    opposite vertex from current vehicle position). Vehicle
    will start at the vertex.
    @param length_in_ft: Length of the rectangle in feet
    @param direction_of_opp_vertex: Direction of diagonally
        opposite vertex from current vehicle position in 
        degrees, going counter-clockwise from the vehicle's
        positive x-axis.
    @param deadline float: Time taken to get from current 
        point to end point in seconds.
    """
    global this_rect

    # Get the length of the diagonal of the rectangle
    diagonal_length = abs(length_in_ft/math.cos(
        math.radians(direction_of_opp_vertex)))

    # Get the width of the diagonal of the rectangle
    width_in_ft = abs(diagonal_length * math.sin(
        math.radians(direction_of_opp_vertex)))

    # Convert direction (local) into direction (global)
    direction_global = direction_of_opp_vertex + (
        vehicle_angle_ref)

    # Calculate the interior angle in degrees between 
    # diagonal of rectangle and the side length
    interior_angle = math.degrees(math.acos(
        length_in_ft/diagonal_length))

    # Calculate coordinates for waypoint 1
    x_wp1 = x_pos_ref + (length_in_ft * math.cos(
        math.radians(direction_global - interior_angle)))
    y_wp1 = y_pos_ref + (length_in_ft * math.sin(
        math.radians(direction_global - interior_angle)))
   
    # Calculate coordinates for waypoint 2
    x_wp2 = x_pos_ref + (diagonal_length * math.cos(
        math.radians(direction_global)))
    y_wp2 = y_pos_ref + (diagonal_length * math.sin(
        math.radians(direction_global)))

    # Angle to wp3 as measured counter-clockwise from the
    # global positive x-axis
    wp3_angle = direction_global + (90.0-interior_angle)

    # Calculate coordinates for waypoint 3
    x_wp3 = x_pos_ref + (width_in_ft * math.cos(
        math.radians(wp3_angle)))
    y_wp3 = y_pos_ref + (width_in_ft * math.sin(
        math.radians(wp3_angle)))

    # Plot the rectangle
    this_rect = patches.Rectangle((x_pos_ref,y_pos_ref),
        length_in_ft,width_in_ft, direction_global - interior_angle,
        lw=2,ec='red', fill=False)

    # Add the rectangle to the Axes
    ax.add_patch(this_rect)

    point_execution_with_wp(x_wp1, y_wp1, x_wp2, y_wp2, 
        x_wp3, y_wp3, x_pos_ref, y_pos_ref, 0.0, deadline)

def move_in_a_figure_eight(circle1_radius = 2.0, 
        circle2_radius = 4.0, direction = 90.0, 
        deadline = 20.0):
    """
    Vehicle can move in a figure 8 consisting of two 
    circles with two user-defined, possibly different
    radii and inclination (direction of circle center 
    from current vehicle position). 
    @param circle1_radius: Radius of the 1st circle in feet
    @param circle2_radius: Radius of the 2nd circle in feet
    @param direction: Direction of circle1 center
        from the vehicle reference point, measured
        from the vehicle's positive x-axis in degrees
    @param deadline float: Time taken to get from current 
        point to end point in seconds.
    """
    # Set the deadlines for the completion of each circle
    deadline1 = (circle1_radius/(
        circle1_radius + circle2_radius)) * deadline
    deadline2 = (circle2_radius/(
        circle1_radius + circle2_radius)) * deadline

    # Set the directions of each circle from the vehicle
    # reference point
    direction1 = direction
    direction2 = direction + 180.0

    # Move in a figure 8 pattern - 1st circle
    move_in_a_circle(circle1_radius,direction1,deadline1)

    # Clear out the first circle from the plot
    circle1.set_radius(0)

    # Move in a figure 8 pattern - 2nd circle
    move_in_a_circle(circle2_radius,direction2,deadline2)

######################## Main Code ########################
# Initiate the simulation environment (i.e. grid)
plt.ion() # Turn on interactive mode
fig = plt.figure() # Create a new blank canvas
ax = fig.gca() # Get the current axes
reset()

####################### Tkinter GUI #######################
# Set the window title
window.title("Omnidirectional Mecanum-Wheeled Robot " +
            "(Author: Addison Sears-Collins)")

# Create user-interface
stop_button = tk.Button(window, text = "Stop", command=stop)
stop_button.grid(row=0, column=1, columnspan=2, pady=3, 
    ipadx=100)

reset_button = tk.Button(window, text = "Reset", command=reset) 
reset_button.grid(row=1, column=1, columnspan=2, pady=3, 
    ipadx=100)

control_robot_body_button = tk.Button(window, 
    text = "Control Robot Body", 
    command=start_control_robot_body) 
control_robot_body_button.grid(row=2, column=0, 
    columnspan=2, padx=5, pady=5)
window.after(1, lambda: control_robot_body(
    float(direction_entry.get()),
    float(speed_entry.get()),
    float(rot_rate_entry.get())))

direction_label = tk.Label(window, 
    text = "Direction (degrees)")
direction_label.grid(row=3, column=0, padx=5)
direction_entry = tk.Entry(window)
direction_entry.grid(row=3, column=1, padx=5)
direction_entry.insert(0, 45.0)

speed_label = tk.Label(window, text = "Speed (ft/s)")
speed_label.grid(row=4, column=0, padx=5)
speed_entry = tk.Entry(window)
speed_entry.grid(row=4, column=1, padx=5)
speed_entry.insert(0, 2.5)

rot_rate_label = tk.Label(window, 
    text = "Rotation Rate (degrees/s)")
rot_rate_label.grid(row=5, column=0, padx=5)
rot_rate_entry = tk.Entry(window)
rot_rate_entry.grid(row=5, column=1, padx=5)
rot_rate_entry.insert(0, 0.0)

control_robot_wheels_button = tk.Button(window, 
    text = "Control Robot Wheels",
    command=start_control_robot_wheels) 
control_robot_wheels_button.grid(row=6, column=0, 
    columnspan=2, padx=5, pady=5)
window.after(1, lambda: control_robot_wheels(
    float(rot_rate1_entry.get()), 
    float(rot_rate2_entry.get()), 
    float(rot_rate3_entry.get()), 
    float(rot_rate4_entry.get())))

rot_rate1_label = tk.Label(window, 
    text = "Rotation Rate 1 (degrees/s)")
rot_rate1_label.grid(row=7, column=0, padx=5)
rot_rate1_entry = tk.Entry(window)
rot_rate1_entry.grid(row=7, column=1, padx=5)
rot_rate1_entry.insert(0, -7.0)

rot_rate2_label = tk.Label(window, 
    text = "Rotation Rate 2 (degrees/s)")
rot_rate2_label.grid(row=8, column=0, padx=5)
rot_rate2_entry = tk.Entry(window)
rot_rate2_entry.grid(row=8, column=1, padx=5)
rot_rate2_entry.insert(0, 0.0)

rot_rate3_label = tk.Label(window, 
    text = "Rotation Rate 3 (degrees/s)")
rot_rate3_label.grid(row=9, column=0, padx=5)
rot_rate3_entry = tk.Entry(window)
rot_rate3_entry.grid(row=9, column=1, padx=5)
rot_rate3_entry.insert(0, 0.0)

rot_rate4_label = tk.Label(window, 
    text = "Rotation Rate 4 (degrees/s)")
rot_rate4_label.grid(row=10, column=0, padx=5)
rot_rate4_entry = tk.Entry(window)
rot_rate4_entry.grid(row=10, column=1, padx=5)
rot_rate4_entry.insert(0, -7.0)

point_exec_no_wp_button = tk.Button(window, 
    text = "Point Execution (No Waypoints)",
    command=lambda: point_execution_no_wp(
        float(destination_x_entry.get()), 
        float(destination_y_entry.get()), 
        float(destination_orientation_entry.get()), 
        float(deadline_entry.get()))) 
point_exec_no_wp_button.grid(row=11, 
    column=0, columnspan=2, padx=5, pady=5)

destination_x_label = tk.Label(window, 
    text = "Destination X (ft)")
destination_x_label.grid(row=12, column=0, padx=5)
destination_x_entry = tk.Entry(window)
destination_x_entry.grid(row=12, column=1, padx=5)
destination_x_entry.insert(0, 5.0)

destination_y_label = tk.Label(window, 
    text = "Destination Y (ft)")
destination_y_label.grid(row=13, column=0, padx=5)
destination_y_entry = tk.Entry(window)
destination_y_entry.grid(row=13, column=1, padx=5)
destination_y_entry.insert(0, 5.0)

destination_orientation_label = tk.Label(window, 
    text = "Destination Orientation (degrees)")
destination_orientation_label.grid(row=14, column=0,padx=5)
destination_orientation_entry = tk.Entry(window)
destination_orientation_entry.grid(row=14, column=1,padx=5)
destination_orientation_entry.insert(0, -45.0)

deadline_label = tk.Label(window, 
    text = "Deadline (seconds)")
deadline_label.grid(row=15, column=0, padx=5)
deadline_entry = tk.Entry(window)
deadline_entry.grid(row=15, column=1, padx=5)
deadline_entry.insert(0, 5.0)

point_exec_with_wp_button = tk.Button(window, 
    text = "Point Execution (With Waypoints)",
    command=lambda: point_execution_with_wp(
        float(wp_x1_entry.get()), float(wp_y1_entry.get()), 
        float(wp_x2_entry.get()), float(wp_y2_entry.get()), 
        float(wp_x3_entry.get()), float(wp_y3_entry.get()),
        float(wp_xfinal_entry.get()), float(wp_yfinal_entry.get()), 
        float(destination_orientationwp_final_entry.get()), 
        float(deadlinewp_entry.get()))) 
point_exec_with_wp_button.grid(row=16, column=0, 
    columnspan=4, padx=5, pady=5)

wp_x1_label = tk.Label(window, text = "Waypoint X1 (ft)")
wp_x1_label.grid(row=17, column=0, padx=5)
wp_x1_entry = tk.Entry(window)
wp_x1_entry.grid(row=17, column=1, padx=5)
wp_x1_entry.insert(0, 5.0)

wp_y1_label = tk.Label(window, text = "Waypoint Y1 (ft)")
wp_y1_label.grid(row=18, column=0, padx=5)
wp_y1_entry = tk.Entry(window)
wp_y1_entry.grid(row=18, column=1, padx=5)
wp_y1_entry.insert(0, 5.0)

wp_x2_label = tk.Label(window, text = "Waypoint X2 (ft)")
wp_x2_label.grid(row=19, column=0, padx=5)
wp_x2_entry = tk.Entry(window)
wp_x2_entry.grid(row=19, column=1, padx=5)
wp_x2_entry.insert(0, 5.0)

wp_y2_label = tk.Label(window, text = "Waypoint Y2 (ft)")
wp_y2_label.grid(row=20, column=0, padx=5)
wp_y2_entry = tk.Entry(window)
wp_y2_entry.grid(row=20, column=1, padx=5)
wp_y2_entry.insert(0, -5.0)

wp_x3_label = tk.Label(window, text = "Waypoint X3 (ft)")
wp_x3_label.grid(row=21, column=0, padx=5)
wp_x3_entry = tk.Entry(window)
wp_x3_entry.grid(row=21, column=1, padx=5)
wp_x3_entry.insert(0, -5.0)

wp_y3_label = tk.Label(window, text = "Waypoint Y3 (ft)")
wp_y3_label.grid(row=22, column=0, padx=5)
wp_y3_entry = tk.Entry(window)
wp_y3_entry.grid(row=22, column=1, padx=5)
wp_y3_entry.insert(0, 5.0)

wp_xfinal_label = tk.Label(window, 
    text = "Destination X Final (ft)")
wp_xfinal_label.grid(row=17, column=2, padx=5)
wp_xfinal_entry = tk.Entry(window)
wp_xfinal_entry.grid(row=17, column=3, padx=5)
wp_xfinal_entry.insert(0, -5.0)

wp_yfinal_label = tk.Label(window, 
    text = "Destination Y Final (ft)")
wp_yfinal_label.grid(row=18, column=2, padx=5)
wp_yfinal_entry = tk.Entry(window)
wp_yfinal_entry.grid(row=18, column=3, padx=5)
wp_yfinal_entry.insert(0, -5.0)

destination_orientationwp_final_label = tk.Label(
    window, text = "Destination Orientation (degrees)")
destination_orientationwp_final_label.grid(row=19, 
    column=2, padx=5)
destination_orientationwp_final_entry = tk.Entry(window)
destination_orientationwp_final_entry.grid(row=19, 
    column=3, padx=5)
destination_orientationwp_final_entry.insert(0, 90.0)

deadlinewp_label = tk.Label(window, 
    text = "Deadline (seconds)")
deadlinewp_label.grid(row=20, column=2, padx=5)
deadlinewp_entry = tk.Entry(window)
deadlinewp_entry.grid(row=20, column=3, padx=5)
deadlinewp_entry.insert(0, 5.0)

move_in_a_circle_button = tk.Button(window, text = "Move in a Circle",
    command=lambda: move_in_a_circle(
        float(radius_entry.get()), 
        float(cir_direction_entry.get()), 
        float(cir_deadline_entry.get()))) 
move_in_a_circle_button.grid(row=2, column=2, columnspan=2, padx=5, pady=5)

radius_label = tk.Label(window, text = "Radius (ft)")
radius_label.grid(row=3, column=2, padx=5)
radius_entry = tk.Entry(window)
radius_entry.grid(row=3, column=3, padx=5)
radius_entry.insert(0, 2.0)

cir_direction_label = tk.Label(window, text = "Circle Center Direction (degrees)")
cir_direction_label.grid(row=4, column=2, padx=5)
cir_direction_entry = tk.Entry(window)
cir_direction_entry.grid(row=4, column=3, padx=5)
cir_direction_entry.insert(0, 45.0)

cir_deadline_label = tk.Label(window, text = "Deadline (seconds)")
cir_deadline_label.grid(row=5, column=2, padx=5)
cir_deadline_entry = tk.Entry(window)
cir_deadline_entry.grid(row=5, column=3, padx=5)
cir_deadline_entry.insert(0, 5.0)

move_in_a_rectangle_button = tk.Button(window, 
    text = "Move in a Rectangle",
    command=lambda: move_in_a_rectangle(
        float(length_entry.get()), 
        float(direc_opp_vrtx_entry.get()), 
        float(rect_deadline_entry.get()))) 
move_in_a_rectangle_button.grid(row=6, column=2, columnspan=2, padx=5, pady=5)

length_label = tk.Label(window, text = "Length (ft)")
length_label.grid(row=7, column=2, padx=5)
length_entry = tk.Entry(window)
length_entry.grid(row=7, column=3, padx=5)
length_entry.insert(0, 5.0)

direc_opp_vrtx_label = tk.Label(window, text = "Direction of Opposite Vertex (degrees)")
direc_opp_vrtx_label.grid(row=8, column=2, padx=5)
direc_opp_vrtx_entry = tk.Entry(window)
direc_opp_vrtx_entry.grid(row=8, column=3, padx=5)
direc_opp_vrtx_entry.insert(0, 25.0)

rect_deadline_label = tk.Label(window, text = "Deadline (seconds)")
rect_deadline_label.grid(row=9, column=2, padx=5)
rect_deadline_entry = tk.Entry(window)
rect_deadline_entry.grid(row=9, column=3, padx=5)
rect_deadline_entry.insert(0, 5.0)

fig8_button = tk.Button(window, 
    text = "Move in a Figure 8",
    command=lambda: move_in_a_figure_eight(
        float(circle1_radius_entry.get()), 
        float(circle2_radius_entry.get()), 
        float(direction_circle1_entry.get()), 
        float(fig_8_deadline_entry.get()))) 
fig8_button.grid(row=10, column=2, columnspan=2, padx=5, pady=5)

circle1_radius_label = tk.Label(window, text = "Circle 1 Radius (ft)")
circle1_radius_label.grid(row=11, column=2, padx=5)
circle1_radius_entry = tk.Entry(window)
circle1_radius_entry.grid(row=11, column=3, padx=5)
circle1_radius_entry.insert(0, 2.0)

circle2_radius_label = tk.Label(window, text = "Circle 2 Radius (ft)")
circle2_radius_label.grid(row=12, column=2, padx=5)
circle2_radius_entry = tk.Entry(window)
circle2_radius_entry.grid(row=12, column=3, padx=5)
circle2_radius_entry.insert(0, 4.0)

direction_circle1_label = tk.Label(window, text = "Direction of Circle 1 (degrees)")
direction_circle1_label.grid(row=13, column=2, padx=5)
direction_circle1_entry = tk.Entry(window)
direction_circle1_entry.grid(row=13, column=3, padx=5)
direction_circle1_entry.insert(0, 90.0)

fig_8_deadline_label = tk.Label(window, text = "Deadline (seconds)")
fig_8_deadline_label.grid(row=14, column=2, padx=5)
fig_8_deadline_entry = tk.Entry(window)
fig_8_deadline_entry.grid(row=14, column=3, padx=5)
fig_8_deadline_entry.insert(0, 20.0)

# Vehicle Position Display
veh_pos_label = tk.Label(window, 
    text = ("Vehicle Position"))
veh_pos_label.grid(row=2, column=4, padx=5)

veh_x_pos_label = tk.Label(window, 
    text = ("X: " + "0.0" + " feet"))
veh_x_pos_label.grid(row=3, column=4, padx=5)

veh_y_pos_label = tk.Label(window, 
    text = ("Y: " + "0.0" + " feet"))
veh_y_pos_label.grid(row=4, column=4, padx=5)

veh_orientation_label = tk.Label(window, 
    text = ("Orientation: " + "0.0" + " degrees"))
veh_orientation_label.grid(row=5, column=4, padx=5)

# Wheel Rotation Rates display
wheel_rot_rates_label = tk.Label(window, 
    text = ("Wheel Rotation Rates"))
wheel_rot_rates_label.grid(row=6, column=4, padx=5)

# Add new rotation rates to display window
wheel_1_rot_label = tk.Label(window, 
    text = ("Wheel 1: " + "0.0" + " degrees/s"))
wheel_1_rot_label.grid(row=7, column=4, padx=5)

wheel_2_rot_label = tk.Label(window, 
    text = ("Wheel 2: " + "0.0" + " degrees/s"))
wheel_2_rot_label.grid(row=8, column=4, padx=5)

wheel_3_rot_label = tk.Label(window, 
    text = ("Wheel 3: " + "0.0" + " degrees/s"))
wheel_3_rot_label.grid(row=9, column=4, padx=5)

wheel_4_rot_label = tk.Label(window, 
    text = ("Wheel 4: " + "0.0" + " degrees/s"))
wheel_4_rot_label.grid(row=10, column=4, padx=5)

# Robot Velocity Display
robot_velocity_label = tk.Label(window, 
    text = ("Robot Velocity (Local)"))
robot_velocity_label.grid(row=11, column=4, padx=5)

robot_velocity_x_label = tk.Label(window, 
    text = ("Velocity X: " + "0.0" + " ft/s"))
robot_velocity_x_label.grid(row=12, column=4, padx=5)

robot_velocity_y_label = tk.Label(window, 
    text = ("Velocity Y: " + "0.0" + " ft/s"))
robot_velocity_y_label.grid(row=13, column=4, padx=5)

# Error Messages
error_label = tk.Label(window, 
    text = ("Error Log"))
error_label.grid(row=14, column=4, 
    padx=5, pady=25) 

# Quit button
exit_button = tk.Button(window, text = "Exit", 
    command=close_window) 
exit_button.grid(row=0, column=4, columnspan=2, 
    padx=5, pady=5, ipadx=50)

window.mainloop()

Return to Table of Contents

Impact of Different Sized Wheels on a Tripod-Wheeled Robot

Consider a tripod-wheeled (i.e. three-wheeled) unmanned ground vehicle whose motors and wheels look like this:

tanklike_png
Two rear wheels that are connected by an axle and a free turning wheel that is in the front.

How will the vehicle move if the right rear wheel is larger than the left? Assume that the free turning wheel remains the same size, and an axle connects the left wheel to the right wheel.

The motion of a point has two types of motion, linear velocity and angular velocity. Because both wheels are connected by the same axle, the big right rear wheel and the relatively smaller left rear wheel will both rotate at the same rates. Therefore, they will have the same angular velocity.

Angular velocity (often denoted as ω) is the rate of change of the angle Ɵ. It is the number of radians (or degrees) the angle Ɵ is changing in a given amount of time.

ω = Ɵ/t

Linear velocity (denoted as v) is the rate of change of the distance traveled of the wheel. Linear velocity is related to angular velocity by the following equation, where r is the radius of the wheel.

v = rω

Therefore, the larger the wheel, the more distance it will travel given the same amount of rotation.

What does this mean for the tripod vehicle that has a right rear wheel that is larger than the left? The right rear wheel is going to cover a lot more distance on the ground in a given amount of time than the left rear wheel it is connected to. This means that, assuming the vehicle is trying to go forward, the vehicle will continuously move in a counter-clockwise direction.

Here is the diagram. Note that the big wheel has a larger radius (denoted as R) than the smaller wheel (denoted as r):

wheel-diagram

How will the vehicle move if the front turning wheel is larger than the two rear wheels? Assume the two rear wheels are equal in size and are connected by a single axle.

A larger wheel will cover a greater distance over the ground than a smaller wheel given the same amount of rotation (in either radians or degrees) per unit time. Therefore, equipping the vehicle with a larger steering wheel will enable the vehicle to move faster, holding all other wheels constant at ‘normal’.

In fact, the penny-farthing bicycles of the 1800s as well as the big wheel tricycles of the 1970s took advantage of this fact. Each had a large front wheel (and two normal rear wheels) that enabled the vehicle to move faster given a certain amount of rotation (i.e. pedaling in those cases).

penny-farthing-bicycle
Penny-farthing bicycle