How To Send a Goal Path to the ROS 2 Navigation Stack – Nav2

In this tutorial, I will show you how to send a goal path to a mobile robot and the ROS 2 Navigation Stack (also known as Nav2) using Python code. Here is the final output you will be able to achieve after going through this tutorial:

Real-World Applications

The application we will develop in this tutorial has a number of real-world use cases.

For example, you can build an autonomous agricultural robot that can do the following jobs:

  • Precision Weeding
  • Counting
  • Fruit Picking
  • Harvesting
  • Irrigation
  • Monitoring
  • Mowing
  • Planting
  • Pruning
  • Seeding
  • Spraying

You could also use this application for an autonomous robotic lawn mower.

Prerequisites

You can find the files for this post here on my Google Drive. Credit to this GitHub repository for the Python scripts. You can find an explanation of Nav2 here.

Directions

Open a terminal window, and move to your package.

cd ~/dev_ws/src/two_wheeled_robot/scripts

Open a new Python program called nav_through_poses.py.

gedit nav_through_poses.py

Add this code.

#! /usr/bin/env python3
# Copyright 2021 Samsung Research America
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified by AutomaticAddison.com

import time # Time library

from geometry_msgs.msg import PoseStamped # Pose with ref frame and timestamp
from rclpy.duration import Duration # Handles time for ROS 2
import rclpy # Python client library for ROS 2

from robot_navigator import BasicNavigator, TaskResult # Helper module

'''
Navigates a robot through goal poses.
'''
def main():

  # Start the ROS 2 Python Client Library
  rclpy.init()


  # Launch the ROS 2 Navigation Stack
  navigator = BasicNavigator()

  # Set the robot's initial pose if necessary
  # initial_pose = PoseStamped()
  # initial_pose.header.frame_id = 'map'
  # initial_pose.header.stamp = navigator.get_clock().now().to_msg()
  # initial_pose.pose.position.x = -6.5
  # initial_pose.pose.position.y = -4.2
  # initial_pose.pose.position.z = 0.0
  # initial_pose.pose.orientation.x = 0.0
  # initial_pose.pose.orientation.y = 0.0
  # initial_pose.pose.orientation.z = 0.0
  # initial_pose.pose.orientation.w = 1.0
  # navigator.setInitialPose(initial_pose)

  # Activate navigation, if not autostarted. This should be called after setInitialPose()
  # or this will initialize at the origin of the map and update the costmap with bogus readings.
  # If autostart, you should `waitUntilNav2Active()` instead.
  # navigator.lifecycleStartup()

  # Wait for navigation to fully activate. Use this line if autostart is set to true.
  navigator.waitUntilNav2Active()

  # If desired, you can change or load the map as well
  # navigator.changeMap('/path/to/map.yaml')

  # You may use the navigator to clear or obtain costmaps
  # navigator.clearAllCostmaps()  # also have clearLocalCostmap() and clearGlobalCostmap()
  # global_costmap = navigator.getGlobalCostmap()
  # local_costmap = navigator.getLocalCostmap()

  # Set the robot's goal poses
  goal_poses = []
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -5.0
  goal_pose.pose.position.y = -4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 0.0
  goal_pose.pose.position.y = -4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 5.0
  goal_pose.pose.position.y = -4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 10.0
  goal_pose.pose.position.y = -4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)

  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.0
  goal_pose.pose.position.y = -4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.5
  goal_pose.pose.position.y = -3.7
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.38
  goal_pose.pose.orientation.w = 0.92
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.5
  goal_pose.pose.position.y = -3.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.707
  goal_pose.pose.orientation.w = 0.707
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.5
  goal_pose.pose.position.y = -2.7
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.92
  goal_pose.pose.orientation.w = 0.38
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.0
  goal_pose.pose.position.y = -2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 10.0
  goal_pose.pose.position.y = -2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 5.0
  goal_pose.pose.position.y = -2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 0.0
  goal_pose.pose.position.y = -2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -5.0
  goal_pose.pose.position.y = -2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -6.5
  goal_pose.pose.position.y = -2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -7.0
  goal_pose.pose.position.y = -1.7
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.92
  goal_pose.pose.orientation.w = 0.38
  goal_poses.append(goal_pose)

  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -7.0
  goal_pose.pose.position.y = -1.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.707
  goal_pose.pose.orientation.w = 0.707
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -7.0
  goal_pose.pose.position.y = -0.7
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.38
  goal_pose.pose.orientation.w = 0.92
  goal_poses.append(goal_pose)

  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -6.5
  goal_pose.pose.position.y = 0.0
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -5.0
  goal_pose.pose.position.y = 0.0
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 0.0
  goal_pose.pose.position.y = 0.0
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)

  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 5.0
  goal_pose.pose.position.y = 0.0
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 10.0
  goal_pose.pose.position.y = 0.0
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose5 = PoseStamped()
  goal_pose5.header.frame_id = 'map'
  goal_pose5.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose5.pose.position.x = 13.0
  goal_pose5.pose.position.y = 0.0
  goal_pose5.pose.position.z = 0.0
  goal_pose5.pose.orientation.x = 0.0
  goal_pose5.pose.orientation.y = 0.0
  goal_pose5.pose.orientation.z = 0.0
  goal_pose5.pose.orientation.w = 1.0
  goal_poses.append(goal_pose5)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.5
  goal_pose.pose.position.y = 0.5
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.38
  goal_pose.pose.orientation.w = 0.92
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.5
  goal_pose.pose.position.y = 1.0
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.707
  goal_pose.pose.orientation.w = 0.707
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.5
  goal_pose.pose.position.y = 1.5
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.92
  goal_pose.pose.orientation.w = 0.38
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.0
  goal_pose.pose.position.y = 2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 10.0
  goal_pose.pose.position.y = 2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 5.0
  goal_pose.pose.position.y = 2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 0.0
  goal_pose.pose.position.y = 2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -5.0
  goal_pose.pose.position.y = 2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -6.5
  goal_pose.pose.position.y = 2.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 1.0
  goal_pose.pose.orientation.w = 0.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -7.0
  goal_pose.pose.position.y = 2.7
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.92
  goal_pose.pose.orientation.w = 0.38
  goal_poses.append(goal_pose)

  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -7.0
  goal_pose.pose.position.y = 3.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.707
  goal_pose.pose.orientation.w = 0.707
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -7.0
  goal_pose.pose.position.y = 3.7
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.38
  goal_pose.pose.orientation.w = 0.92
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -6.5
  goal_pose.pose.position.y = 4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = -5.0
  goal_pose.pose.position.y = 4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 0.0
  goal_pose.pose.position.y = 4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 5.0
  goal_pose.pose.position.y = 4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)
  
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 10.0
  goal_pose.pose.position.y = 4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)

  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 13.0
  goal_pose.pose.position.y = 4.2
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0
  goal_poses.append(goal_pose)

  # sanity check a valid path exists
  # path = navigator.getPathThroughPoses(initial_pose, goal_poses)

  # Go through the goal poses
  navigator.goThroughPoses(goal_poses)

  i = 0
  # Keep doing stuff as long as the robot is moving towards the goal poses
  while not navigator.isNavComplete():
    ################################################
    #
    # Implement some code here for your application!
    #
    ################################################

    # Do something with the feedback
    i = i + 1
    feedback = navigator.getFeedback()
    if feedback and i % 5 == 0:
      print('Distance remaining: ' + '{:.2f}'.format(
            feedback.distance_remaining) + ' meters.')

      # Some navigation timeout to demo cancellation
      if Duration.from_msg(feedback.navigation_time) > Duration(seconds=1000000.0):
        navigator.cancelNav()

      # Some navigation request change to demo preemption
      if Duration.from_msg(feedback.navigation_time) > Duration(seconds=500000.0):
        goal_pose_alt = PoseStamped()
        goal_pose_alt.header.frame_id = 'map'
        goal_pose_alt.header.stamp = navigator.get_clock().now().to_msg()
        goal_pose_alt.pose.position.x = -6.5
        goal_pose_alt.pose.position.y = -4.2
        goal_pose_alt.pose.position.z = 0.0
        goal_pose_alt.pose.orientation.x = 0.0
        goal_pose_alt.pose.orientation.y = 0.0   
        goal_pose_alt.pose.orientation.z = 0.0
        goal_pose_alt.pose.orientation.w = 1.0
        navigator.goThroughPoses([goal_pose_alt])

  # Do something depending on the return code
  result = navigator.getResult()
  if result == TaskResult.SUCCEEDED:
    print('Goal succeeded!')
  elif result == TaskResult.CANCELED:
    print('Goal was canceled!')
  elif result == TaskResult.FAILED:
    print('Goal failed!')
  else:
    print('Goal has an invalid return status!')

  # Close the ROS 2 Navigation Stack
  navigator.lifecycleShutdown()

  exit(0)

if __name__ == '__main__':
  main()

The orientation values are in quaternion format. You can use this calculator to convert from Euler angles (e.g. x = 0 radians, y = 0 radians, z = 1.57 radians)  to quaternion format (e.g. x = 0, y, = 0, z = 0.707, w = 0.707). 

Save the code, and close the file.

Change the access permissions on the file.

chmod +x nav_through_poses.py

Open a new Python program called robot_navigator.py.

gedit robot_navigator.py 

Add this code.

Save the code and close the file.

Change the access permissions on the file.

chmod +x robot_navigator.py 

Open CMakeLists.txt.

cd ~/dev_ws/src/two_wheeled_robot

gedit CMakeLists.txt

Add the Python executables. Here is what my CMakeLists.txt file looks like.

scripts/nav_through_poses.py

scripts/robot_navigator.py

Add the launch file. Here is my launch file code.

cd ~/dev_ws/src/two_wheeled_robot/launch/farm_world
gedit farm_world_v2.launch.py

Save and close the file.

Add the Nav2 parameters.

cd ~/dev_ws/src/two_wheeled_robot/params/farm_world
gedit nav2_params_static_transform_pub.yaml

Save and close the file.

Now we build the package.

cd ~/dev_ws/
colcon build

Open a new terminal and launch the robot in a Gazebo world. I chose to use my farm_world that has several rows of crops.

ros2 launch two_wheeled_robot farm_world_v2.launch.py

Wait for the simulation to fully load. I like to wait three minutes so the pose of the robot can set to the correct location within RViz.

1-farming-agricultural-robot-weeding-gazebo-1
2-farming-agricultural-robot-weeding-gazebo

If the global costmap doesn’t load, try launching again.

Now send the goal path by opening a new terminal window, and typing:

ros2 run two_wheeled_robot nav_through_poses.py

You will see the distance remaining to the goal pose printed on the screen. You can also choose to print other information to the screen by getting the appropriate message type.

2-farming-agricultural-robot-weeding-rviz-and-gazebo

You will also see the path from the initial pose to the goal poses printed on the screen.

2-farming-agricultural-robot-weeding-rviz

The robot will move through the goal poses.

A success message will print once the robot has reached the final goal pose.

That’s it! Keep building!

How to Send Goals to the ROS 2 Navigation Stack – Nav2

In this tutorial, I will show you how to send goals to a mobile robot and the ROS 2 Navigation Stack (also known as Nav2) using Python code. Here is the final output you will be able to achieve after going through this tutorial:

Real-World Applications

The application that we will develop in this tutorial can be used in a number of real-world robotic applications: 

  • Ground Delivery
  • Hospitals and Medical Centers
  • Hotels (Room Service)
  • Offices
  • Restaurants
  • Warehouses
  • And more…

Prerequisites

You can find the files for this post here on my Google Drive. Credit to this GitHub repository for the Python scripts. You can find an explanation of Nav2 here.

Directions

Open a terminal window, and move to your package.

cd ~/dev_ws/src/two_wheeled_robot/scripts

Open a new Python program called nav_to_pose.py

gedit nav_to_pose.py

Add this code.

#! /usr/bin/env python3
# Copyright 2021 Samsung Research America
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified by AutomaticAddison.com

import time  # Time library

from geometry_msgs.msg import PoseStamped # Pose with ref frame and timestamp
from rclpy.duration import Duration # Handles time for ROS 2
import rclpy # Python client library for ROS 2

from robot_navigator import BasicNavigator, NavigationResult # Helper module

'''
Navigates a robot from an initial pose to a goal pose.
'''
def main():

  # Start the ROS 2 Python Client Library
  rclpy.init()

  # Launch the ROS 2 Navigation Stack
  navigator = BasicNavigator()

  # Set the robot's initial pose if necessary
  # initial_pose = PoseStamped()
  # initial_pose.header.frame_id = 'map'
  # initial_pose.header.stamp = navigator.get_clock().now().to_msg()
  # initial_pose.pose.position.x = 0.0
  # initial_pose.pose.position.y = 0.0
  # initial_pose.pose.position.z = 0.0
  # initial_pose.pose.orientation.x = 0.0
  # initial_pose.pose.orientation.y = 0.0
  # initial_pose.pose.orientation.z = 0.0
  # initial_pose.pose.orientation.w = 1.0
  # navigator.setInitialPose(initial_pose)

  # Activate navigation, if not autostarted. This should be called after setInitialPose()
  # or this will initialize at the origin of the map and update the costmap with bogus readings.
  # If autostart, you should `waitUntilNav2Active()` instead.
  # navigator.lifecycleStartup()

  # Wait for navigation to fully activate. Use this line if autostart is set to true.
  navigator.waitUntilNav2Active()

  # If desired, you can change or load the map as well
  # navigator.changeMap('/path/to/map.yaml')

  # You may use the navigator to clear or obtain costmaps
  # navigator.clearAllCostmaps()  # also have clearLocalCostmap() and clearGlobalCostmap()
  # global_costmap = navigator.getGlobalCostmap()
  # local_costmap = navigator.getLocalCostmap()

  # Set the robot's goal pose
  goal_pose = PoseStamped()
  goal_pose.header.frame_id = 'map'
  goal_pose.header.stamp = navigator.get_clock().now().to_msg()
  goal_pose.pose.position.x = 10.0
  goal_pose.pose.position.y = -2.0
  goal_pose.pose.position.z = 0.0
  goal_pose.pose.orientation.x = 0.0
  goal_pose.pose.orientation.y = 0.0
  goal_pose.pose.orientation.z = 0.0
  goal_pose.pose.orientation.w = 1.0

  # sanity check a valid path exists
  # path = navigator.getPath(initial_pose, goal_pose)

  # Go to the goal pose
  navigator.goToPose(goal_pose)

  i = 0

  # Keep doing stuff as long as the robot is moving towards the goal
  while not navigator.isNavComplete():
    ################################################
    #
    # Implement some code here for your application!
    #
    ################################################

    # Do something with the feedback
    i = i + 1
    feedback = navigator.getFeedback()
    if feedback and i % 5 == 0:
      print('Distance remaining: ' + '{:.2f}'.format(
            feedback.distance_remaining) + ' meters.')

      # Some navigation timeout to demo cancellation
      if Duration.from_msg(feedback.navigation_time) > Duration(seconds=600.0):
        navigator.cancelNav()

      # Some navigation request change to demo preemption
      if Duration.from_msg(feedback.navigation_time) > Duration(seconds=120.0):
        goal_pose.pose.position.x = -3.0
        navigator.goToPose(goal_pose)

  # Do something depending on the return code
  result = navigator.getResult()
  if result == NavigationResult.SUCCEEDED:
      print('Goal succeeded!')
  elif result == NavigationResult.CANCELED:
      print('Goal was canceled!')
  elif result == NavigationResult.FAILED:
      print('Goal failed!')
  else:
      print('Goal has an invalid return status!')

  # Shut down the ROS 2 Navigation Stack
  navigator.lifecycleShutdown()

  exit(0)

if __name__ == '__main__':
  main()

The orientation values are in quaternion format. You can use this calculator to convert from Euler angles (e.g. x = 0 radians, y = 0 radians, z = 1.57 radians)  to quaternion format (e.g. x = 0, y, = 0, z = 0.707, w = 0.707). 

Save the code and close the file.

Change the access permissions on the file.

chmod +x nav_to_pose.py

Open a new Python program called robot_navigator.py.

gedit robot_navigator.py 

Add this code.

Save the code and close the file.

Change the access permissions on the file.

chmod +x robot_navigator.py 

Open CMakeLists.txt.

cd ~/dev_ws/src/two_wheeled_robot
gedit CMakeLists.txt

Add the Python executables. Here is what my CMakeLists.txt looks like.

scripts/nav_to_pose.py

scripts/robot_navigator.py

Now we build the package.

cd ~/dev_ws/
colcon build

Open a new terminal and launch the robot in a Gazebo world. Here is my launch file. I chose to use my car_world that has some houses, a fast food restaurant, and a gas station:

ros2 launch two_wheeled_robot car_world_v1.launch.py

Wait for the simulation to load, and then send the goal by opening a new terminal window, and typing:

ros2 run two_wheeled_robot nav_to_pose.py
1-initial-pose

You will see the distance remaining to the goal printed on the screen. You can also choose to print other information to the screen by getting the appropriate message type.

1-distance-countdown

You will also see the path from the initial pose to the goal pose printed on the screen.

The robot will move to the goal.

2-go-to-goal

A success message will print once the robot has reached the goal.

3-goal-succeeded

That’s it! Keep building!

How to Load a Robot Model (SDF Format) into Gazebo – ROS 2

In this post, I will show you how to load an SDF file into Gazebo. Simulation Description Format (SDF) is the standard Gazebo format for robot modeling. 

If you would like to learn more about SDF files, check out this page.

Prerequisites

You can find the files for this post here on my Google Drive.

Create the SDF File

I am going to open up a terminal window, and type the following command to go to the directory where my SDF file will be located.

cd ~/dev_ws/src/two_wheeled_robot/models

Add the folder for the model into this directory. The name of my folder is two_wheeled_robot_description. You can find the folder here on my Google Drive.

Launch the Model Manually

To launch the model manually, you will need to go to your bashrc file and add the path to the model so that Gazebo can find it.

Open a terminal window, and type:

gedit ~/.bashrc

Add the following line to the bottom of the file:

export GAZEBO_MODEL_PATH=$GAZEBO_MODEL_PATH:/home/focalfossa/dev_ws/src/two_wheeled_robot/models
1-add-this-line

Save the file and close it.

Open Gazebo.

gazebo 

Click Insert in the top left.

2-click-insert

I will scroll down until I find “Two Wheeled Robot”. I click on the robot and place it inside the Gazebo empty world.

3-two-wheeled-robot

Here is what it looks like:

4-two-wheeled-robot-1

Press CTRL+C in all windows to close everything down.

Launch the Model Automatically

Now I want to launch the model automatically.

Create the Launch File

Now we want to create a launch file.

I am going to go to my launch folder and create the file. Here is the command I will type in my terminal window.

cd ~/dev_ws/src/two_wheeled_robot/launch
gedit launch_sdf_into_gazebo.launch.py

Type the following code inside the file.

# Author: Addison Sears-Collins
# Date: September 27, 2021
# Description: Load an SDF and world file into Gazebo.
# https://automaticaddison.com

import os
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument, ExecuteProcess, IncludeLaunchDescription
from launch.conditions import IfCondition, UnlessCondition
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import Command, LaunchConfiguration, PythonExpression
from launch_ros.actions import Node
from launch_ros.substitutions import FindPackageShare


def generate_launch_description():

  # Constants for paths to different files and folders
  gazebo_models_path = 'models'
  package_name = 'two_wheeled_robot'
  robot_name_in_model = 'two_wheeled_robot'
  sdf_model_path = 'models/two_wheeled_robot_description/model.sdf'
  world_file_path = 'worlds/neighborhood.world'
    
  # Pose where we want to spawn the robot
  spawn_x_val = '0.0'
  spawn_y_val = '0.0'
  spawn_z_val = '0.0'
  spawn_yaw_val = '0.0'

  ############ You do not need to change anything below this line #############
  
  # Set the path to different files and folders.  
  pkg_gazebo_ros = FindPackageShare(package='gazebo_ros').find('gazebo_ros')   
  pkg_share = FindPackageShare(package=package_name).find(package_name)
  world_path = os.path.join(pkg_share, world_file_path)
  gazebo_models_path = os.path.join(pkg_share, gazebo_models_path)
  os.environ["GAZEBO_MODEL_PATH"] = gazebo_models_path
  sdf_model_path = os.path.join(pkg_share, sdf_model_path)
  
  # Launch configuration variables specific to simulation
  gui = LaunchConfiguration('gui')
  headless = LaunchConfiguration('headless')
  namespace = LaunchConfiguration('namespace')
  sdf_model = LaunchConfiguration('sdf_model')
  use_namespace = LaunchConfiguration('use_namespace')
  use_sim_time = LaunchConfiguration('use_sim_time')
  use_simulator = LaunchConfiguration('use_simulator')
  world = LaunchConfiguration('world')
  
  # Declare the launch arguments  
  declare_namespace_cmd = DeclareLaunchArgument(
    name='namespace',
    default_value='',
    description='Top-level namespace')

  declare_use_namespace_cmd = DeclareLaunchArgument(
    name='use_namespace',
    default_value='false',
    description='Whether to apply a namespace to the navigation stack')
            
  declare_sdf_model_path_cmd = DeclareLaunchArgument(
    name='sdf_model', 
    default_value=sdf_model_path, 
    description='Absolute path to robot sdf file')

  declare_simulator_cmd = DeclareLaunchArgument(
    name='headless',
    default_value='False',
    description='Whether to execute gzclient')
    
  declare_use_sim_time_cmd = DeclareLaunchArgument(
    name='use_sim_time',
    default_value='true',
    description='Use simulation (Gazebo) clock if true')

  declare_use_simulator_cmd = DeclareLaunchArgument(
    name='use_simulator',
    default_value='True',
    description='Whether to start the simulator')

  declare_world_cmd = DeclareLaunchArgument(
    name='world',
    default_value=world_path,
    description='Full path to the world model file to load')
  
  # Start Gazebo server
  start_gazebo_server_cmd = IncludeLaunchDescription(
    PythonLaunchDescriptionSource(os.path.join(pkg_gazebo_ros, 'launch', 'gzserver.launch.py')),
    condition=IfCondition(use_simulator),
    launch_arguments={'world': world}.items())

  # Start Gazebo client    
  start_gazebo_client_cmd = IncludeLaunchDescription(
    PythonLaunchDescriptionSource(os.path.join(pkg_gazebo_ros, 'launch', 'gzclient.launch.py')),
    condition=IfCondition(PythonExpression([use_simulator, ' and not ', headless])))

  # Launch the robot
  spawn_entity_cmd = Node(
    package='gazebo_ros', 
    executable='spawn_entity.py',
    arguments=['-entity', robot_name_in_model, 
               '-file', sdf_model,
                  '-x', spawn_x_val,
                  '-y', spawn_y_val,
                  '-z', spawn_z_val,
                  '-Y', spawn_yaw_val],
                  output='screen')

  # Create the launch description and populate
  ld = LaunchDescription()

  # Declare the launch options
  ld.add_action(declare_namespace_cmd)
  ld.add_action(declare_use_namespace_cmd)
  ld.add_action(declare_sdf_model_path_cmd)
  ld.add_action(declare_simulator_cmd)
  ld.add_action(declare_use_sim_time_cmd)
  ld.add_action(declare_use_simulator_cmd)
  ld.add_action(declare_world_cmd)

  # Add any actions
  ld.add_action(start_gazebo_server_cmd)
  ld.add_action(start_gazebo_client_cmd)
  ld.add_action(spawn_entity_cmd)

  return ld

Save the file and close it.

Build the Package

Go to the root folder.

cd ~/dev_ws/

Build the package.

colcon build

Launch the Launch File

Now let’s launch the launch file.

cd ~/dev_ws/
ros2 launch two_wheeled_robot launch_sdf_into_gazebo.launch.py

Here is the output:

5-launch-sdf-file-gazebo