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ABSTRACT 

Each year weather-related catastrophes account for an estimated United States 
dollars (USO) $40 billion in damage across the world, although only a fraction of this 
risk of loss is insured. Losses from hurricanes in the United States have increased over 
the past several years to the extent that many insurance companies have become 
increasingly reluctant to insure in certain locations along the coast. Several insurance 
companies have become insolvent as a result of the active hurricane seasons of 2004 and 
2005. In order to cope with this hurricane risk, some insurance and reinsurance firms 
have shifted part of their risk to the capital markets in the form of catastrophe bonds. 

Two problems are observed with catastrophe bonds based on parametric triggers 
(e.g. Saffir-Simpson scale rating of a hurricane at landfall). First, the trigger mechanisms 
are measured imprecisely, with the degree of imprecision depending on the choice of 
trigger mechanism, the available sensor systems, and the methods by which 
meteorologists analyze the resulting observations. Second, the trigger mechanisms might 
not relate well to the economic harm caused by the weather phenomena, suggesting that 
they were not selected on the basis of adequate understanding of relevant meteorology 
and its relationship to storm damage. Both problems are documented, and perhaps 
ameliorated in part, by a thorough study of the relevant meteorology and meteorological 
practices. 

Development of a set of robust and relevant triggers for catastrophe bonds for 
hurricanes is the objective of this study. The real-time and post-landfall accuracy of 
measured hurricane parameters such as minimum central pressure and maximum 
sustained surface wind speed were analyzed. Linear regression and neural networks were 
then employed in order to determine the predictability of storm damage from these 
measurable hurricane parameters or combination thereof. The damage dataset consisted 
of normalized economic losses for hurricane landfalls along the United States Gulf and 
Atlantic coasts from 1900 to 2005. 

The results reveal that single hurricane parameters and combinations of hurricane 
parameters can be poor indicators of the amount of storm damage. The results suggest 
that modeled-loss type catastrophe bonds may be a potentially superior alternative to 
parametric-type bonds, which are highly sensitive to the accuracy of the measurements of 
the underlying storm parameters and to the coastal bathymetry, topography, and 
economic exposure. A procedure for determining the robustness of a risk model for use 
in modeled-loss type catastrophe bonds is also presented. 
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Chapter 1. INTRODUCTION 

Losses from hurricanes in the United States have increased over the past several 

years to the extent that many insurance companies have become increasingly reluctant to 

insure in certain locations along the coast (McCarty 2006). Traditionally, insurance 

companies have purchased reinsurance from reinsurance firms in order to hedge against 

such catastrophic risks (McCarty 2006). Reinsurance contracts are to insurance 

companies what primary insurance is to individual policy holders. A primary insurance 

company pays a reinsurer a premium in exchange for protection. In the event of a large 

natural catastrophe, the reinsurer pays the insurance company a predetermined amount 

that is a function of the amount of losses the firm realized from the storm. 

Until a series of damaging catastrophes in the early 1990s, the practice of using 

reinsurance contracts as a hedge against catastrophic risks worked fairly well (Bantwal 

and Kunreuther 2000). However, beginning in 1992, three catastrophes placed a 

tremendous strain on the reinsurance industry: Hurricane Andrew in 1992, the Midwest 

floods of 1993, and the Northridge earthquake of 1994. These events revealed the need 

for alternative forms of reinsurance. 

Beginning in 1994, some reinsurers responded to the increased limitations on their 

capacity to finance large natural disasters by issuing catastrophe bonds. Since then, 

catastrophe bonds have been issued for risks associated with both natural and man-made 

disasters. Catastrophe bonds facilitate the transfer of risk from bond issuers-most often 

reinsurance companies-to risk tolerant institutions in the capital markets such as hedge 

funds and investment banks. These bonds also enable bond issuers to expand their 

insurance capacity. 
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A catastrophe bond works as follows: 

An investor purchases a catastrophe bond from a bond issuer. The bond issuer 

must pay regular interest to the investor until the bond reaches maturity. If the bond 

reaches maturity without the occurrence of a pre-defined catastrophic event, the bond 

issuer is obliged to return the original principal payment to the investor. If a catastrophe 

occurs prior to the maturity date and exceeds the strike levels (a.k.a. triggers) of the bond 

(e.g. insured losses > 100 million dollars in the case of an indemnity-type bond
1
,

hurricane wind speed >150mph, in the case of a parametric-type catastrophe bond
2
), the 

investor no longer receives interest payments from the issuer and looses all or part of the 

principal. The issuer can use the retained principal to cover damages associated with the 

catastrophe. 

There are a variety of catastrophe bond triggers currently in use. Many of the 

early catastrophe bonds were indemnity-type. With this type, if the realized insured 

losses of the bond issuer exceed a certain threshold, the bond triggers. The advantage of 

these bonds are that the bond is tied to the actual losses realized by the bond issuer. The 

disadvantage of these transactions is the risk of moral hazard. Moral hazard is a term 

commonly used in insurance to describe what occurs when coverage against a loss might 

increase the risk-taking behavior of the insured (i.e. the bond issuer). For example, an 

insurance company that issues an indemnity-based hurricane bond might decide to 

expand insurance coverage in high risk, low-lying, coastal areas because it knows that the 

catastrophe bond would cover its excess losses in the event of a large catastrophe. To 

1 An indemnity-type catastrophe bond is one in which the trigger is based on the actual losses realized by 

the bond issuer. 
2 A parametric-type catastrophe bond is one in which the trigger is based on a physical, measurable trigger 
such as maximum sustained surface wind speed or barometric pressure. 
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protect itself against this scenario, some investors prefer firms to issue indemnity-type 

bonds that have multiple damage thresholds, corresponding to different layers of risk. 

For example, if the realized losses of a firm trigger a primary threshold (i.e. exceed a pre­

specified loss amount), there is a payout. If the realized losses of a firm trigger a 

secondary threshold, there is a greater payout. The payout amount increases as 

subsequent thresholds of the bond are triggered. However, even when a firm is protected, 

indemnity-type bonds can also be abused by inflating reported losses. 

As an alternative that eliminates the latter problem but not moral hazard, some of 

the triggers used in catastrophe bonds are based on modeled losses. If the modeled losses 

to the bond issuer exceed a specific threshold, the bond triggers. Investors lose either all 

or part of the principal that they originally invested. The losses are simulated, determined 

after a storm makes landfall. A risk modeling firm feeds the landfall-measurable 

parameters of the hurricane into a model and then estimates the total amount of damage 

caused by the storm. If this value exceeds a predetermined threshold, the bond triggers. 

The advantage to the issuer is that the bond could potentially be more closely related to 

the storm damages than it would be if triggered off of a single parameter such as wind 

speed and pressure. The disadvantage is that this best case is achieved only if the data 

used to develop the model and drive the simulations accurately reflects the relevant 

physics and economics. The interdisciplinary problems involved are quite complex, 

rendering verification by investors more challenging than with single-parameter triggers. 

This is called asymmetry in information where the bond issuer knows more about the 

model than does the investor. 
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To lessen the problem of moral hazard risk and asymmetries in information 

associated with some of the early indemnity bond issues, parametric-type catastrophe 

bonds were developed. These bonds are based on physical triggers (Table 1). The 

advantage of this bond type is that the information on the trigger is readily available from 

public sources such as the National Hurricane Center. The disadvantage is that they have 

the problem of basis risk in that the triggers might not be correlated to the losses realized 

by the bond issuer. As is demonstrated in this study, there is also measurement error 

associated with the trigger used in a parametric-type catastrophe bond. 

In this paper, we demonstrate that current hurricane catastrophe bond triggers 

such as whether or not the Saffir-Simpson rating of a hurricane exceeds a predefined 

threshold are subject to a substantial degree of measurement uncertainty. Therefore, 

catastrophe bonds based on these triggers are only as useful as the accuracy of the 

underlying measurements used to determine whether or not the trigger reaches the pre­

defined strike levels. Further uncertainty arises because such hurricane event parameters 

are based on the time/space interpolation and extrapolation of a limited number of 

observations, the representativeness of which is not guaranteed. Second, this processing 

requires subjective decisions by staff at the National Hurricane Center (NHC) (personal 

communication, Richard Pasch 2006). The resulting uncertainty in the actual value of the 

trigger and hurricane parameters has the potential to cause economic problems and legal 

uncertainty. This study explores the methodological nature of these triggers and suggests 

triggers that might be most robustly (i.e. with accuracy) measured. 

In addition to the uncertainty associated with the triggers, the correlation between 

measurable hurricane parameters such as wind speed or barometric pressure and the 
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resulting damage is uncertain. Powell et al. (2004) suggests that, from an insurance 

perspective, the maximum sustained surface wind speed at landfall might not be the most 

reliable measure of risk or damage potential because it does not take the entire spatial 

wind field into account. Given a set of "robust" triggers and hurricane parameter data, 

we use the empirical modeling techniques of linear regression and neural networks 

(Bishop 1996) to determine the measurable parameter or combination of parameters of a 

hurricane that is most correlated with storm damage. If a particular trigger can be 

measured accurately and is highly correlated with economic damage, it would appear to 

be a good candidate for use in a hurricane catastrophe bond. The meteorological triggers 

that have been used for past catastrophe bond offerings (Table 1) were attempts to 

achieve this delicate balance between using a trigger that is accurately measured and 

using a trigger that correlates well with the losses of the bond issuer. 
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TABLE l. Meteorological triggers for catastrophe bonds. 

Meteorolmdcal Tri22ers for Catastroohe Bonds Summarv (1997-2005*) 

"(Voes ofTritlllers Bond Issues 

Barometric Pressure Prime Capital 
(Bond triggers if barometric I Hurricane 

pressure is lower than a Ltd. 2000 
predetermined level) 

Wind Speed Pioneer Ltd. 
(Bond triggers if wind speed 2002 

exceeds a predetermined level) Arbor I Ltd. 
2003 
Arbor II Ltd. 
2003 
Palm Capital 
Ltd. 2003 

Saffir-Simpson Scale Hurricane Residential 

Rating Re 1-1997 

(Bond triggers if Saffir-Simpson Residential 
Scale strength rating exceeds a Rell -1998 

predetermined level) 
Residential 
Re III-1999 

+ Residential 
RelV-2000 

Indemnity Trigger 
Residential 
ReV-2001 

Residential 
Re VI-2002 

Modeled Losses Zurich Re., 

(After the occurrence of a Trinom Ltd. 
catastrophe, the weather 2001 

observations are fed into a Helix 04 Ltd. 
catastrophe model. This model is 2004 

then run against a company's Atlantic & 
exposure database to produce Western Re 

simulated losses. If the simulated Ltd. I & II., 
losses are above a specified PXRE 2005 

threshold, the bond is triggered) Champlain 
Ltd., 
Montpelier 
Re 2005 

Comments/Notes 

Bond covers specific areas or "gates" in New York, 
NY and Miami, FL 

New York, NY: 
pressure< 955 millibars (0.54% prob.). 

Miami,FL: 
pressure< 932 (0.17% prob.) for gate A 

OR 
<936 millibars for gate B (0.76% prob.) 

All issues are sponsored by Swiss Re based on 
measured peak wind gust during U.S. landfalling 
hurricane. This summer, I will work to find out the 
actual wind speed trigger values for these four 
issues. 

All of the Residential Re issues are a combination 
of indemnity losses with a physical index trigger: 

Indemnity trigger: The bonds trigger when USAA 
losses exceed a certain threshold. 

Physical trigger: Losses must be caused by a 
Category 3, 4 or 5 storm on the Saffir-Simpson 
index in District of Columbia or any one of the 
following states: Alabama, Connecticut, Delaware, 
Florida, Georgia, Louisiana, Maine, Maryland, 
Massachusetts, Mississippi, New Hampshire, New 
Jersey, New York, North Carolina, Pennsylvania, 
Rhode Island, South Carolina, Texas, Vermont and 

Virginia. 

It is worth examining the error in the weather 
observations taken during a catastrophic hurricane. 
Specifically, how reliable are the National Weather 
Service's measurements of wind speed 
(anemometer), pressure (dropsonde), storm surge 
(estimation), and rainfall (rain gauge). These 
measurements are fed in to the catastrophe models 
to produce modeled storm losses. It is the modeled 
storm losses that then determine if a bond triggers 
or not. 
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Chapter 2. DATA AND METHODOLOGY 

a. Historical hurricane measurements

The estimated minimum central pressure and maximum sustained surface wind 

speed values at landfall were obtained from the National Hurricane Center (NHC) North 

Atlantic hurricane database (HURDAT). Jarvinen et al. (1984) originally prepared this 

dataset, but it continues to undergo extensive updates and revisions (Landsea et al. 2004; 

Partagas and Diaz 1996). During the period from 1900-2005, a total of 135 landfalling 

hurricane events were identified along the coastal United States. 

b. Hurricane economic impact

The damage dataset used in this study is from Pielke et al. (2007). This data 

consists of normalized hurricane damage estimates from 1900-2005. Pielke et al. (2007) 

uses two different approaches for normalizing storm damage for each landfalling 

hurricane over the 106-y period. The first approach follows the methodology of Pielke 

and Landsea (1998), adjusting past storm damage for changing societal conditions by 

accounting for inflation and changes in wealth and population updated to 2005. The 

second approach follows the methodology of Collins and Lowe (2001), adjusting storm 

damage for changes in inflation and wealth at the national level and changes in 

population and housing units at the coastal county level updated to 2005. The two 

approaches produce similar damage figures (Fig. 1) as described in detail in Pielke et al. 

(2007). This dataset provides a continuous record of normalized damage estimates of 

landfalling hurricanes during the 1900-2005 period. As described in Pielke and Landsea 

(1998), this methodology is sensitive to the accuracy of the reported damage figures. 
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Data that indicate that a given hurricane caused more or less damage could alter our 

results. 

,_ 

= 
,_ 

= r,l'J 
N � 
'-' ;-,.. � 

QJ 0!J -
o-- 0

0 0 "'0 
� "'0
"'0 0 . 

= 
..= p 

� QJ 

r,l'J � =
= = 
... N 

0 

1.6E+l 1 

1.4E+ 11 

1.2E+l 1 

lE+l 1 

8E+10 

6E+10 

4E+10 

2E+10 

0 
0 2E+ 10 4E+ 10 6E+ 10 SE+ 10 lE+ 11 lE+ 11 lE+ 11 2E+ 11 

Pielke and Landsea (1998) Methodology 

(2005 U.S. dollars) 

FIG. l. Pielke and Landsea (1998) methodology vs. Collins and Lowe (2001) methodology for estimating 

storm damage for landfalling hurricane events from 1900-2005. 

c. Catastrophe bond trigger data

Data on the common triggers for catastrophe bonds was obtained directly from 

offering circulars. An offering circular is a legal document produced by the bond issuer 

for each catastrophe bond issued, as required by the Securities Act of 1933. It includes 

the following information about the bond: the risk factors, the purpose of the offering, 

the credit rating, income tax considerations, a plan of distribution, a risk analysis report 

by a modeling firm (e.g. Equecat), and a detailed description of the conditions required 

for the bond to trigger. In theory, it contains any information that may be of use to a 

prospective investor, although as mentioned above asymmetric information situations can 

arise. Further information on the popular triggers was obtained through personal 

--u 
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communication with professionals at Swiss Re, Munich Re, Lane Financial L.L.C, Guy 

Carpenter, and Applied Insurance Research (AIR). 

d. Neural network architecture

Linear regression and neural networks (NNs) were used to extract patterns that 

might exist between hurricane parameters or combination of parameters (i.e. predictors) 

and the associated storm damage (i.e. predictand). A NN is a nonlinear regression 

technique that is modeled loosely on the small-scale structure of the human brain (Reed 

and Marks 1999). NNs recognize patterns and develop classifications through repetitive 

training. Unlike linear regression, NNs can develop models of phenomena in which the 

relationship between the predictors and predictand is nonlinear (Marzban and Stumpf 

1996). Because of the inherent nonlinearity of atmospheric phenomena, NNs have 

gained wide acceptance as an empirical modeling tool in meteorology (Hsieh and Tang 

1998). 

The architecture of the NN in this study follows the standard construct of a 

feedforward network discussed in many data mining books (e.g. Reed and Marks 1999; 

Witten and Frank 2005). Developmental cases begin at an input layer and then pass 

through one or more hidden layers to an output layer. Each layer consists of a set of 

nodes. At each node, the weighted average of the predictors is computed where x 
1 

is the 

j th predictor, wii is the weight for that predictor for node i, and u; is the weighted

average coming out of the i th node (Witten and Frank 2005): 

U; = L, WuXJ (2.1) 

The weighted averages are "squashed" by a sigmoid function to ensure that all 

values are between 0 and 1: 



1 
f(u;) 

= 

1 -u +e

10 

(2.2) 

These values then become the predictors for a subsequent hidden layer. Thus, 

they serve as intermediate predictions. The predictions of one hidden layer become the 

input of the next until the weighted average of the predictions of the last hidden layer is 

squashed and returned as the final, output layer of values (i.e. the predictand). 

After developmental cases are fed through the NN, the output is compared to 

known values of the predictand. The differences between this known predictand and the 

predicted output is the error. The error values are used to adjust weights in the NN 

through a process called backpropagation (Bishop 1996). These weights are analogous to 

the coefficients in a linear regression equation. A NN learns through iterative adjustment 

of these weights. This process is conducted via gradient descent so as to minimize the 

error of the output (Reed and Marks 1999). For each training case, the derivative of the 

error surface is computed with respect to the weights then the weights are adjusted in a 

manner proportional to the mean value of this error gradient averaged over all the training 

cases. Ideally, the weights are adjusted until the neural network converges on a global 

minimum. In practice, of course, there is some risk of this gradient descent method 

getting trapped in a local minima, so multiple runs with different initial weights are 

undertaken. 

After training the NN on developmental data, it is necessary to test the newly 

created system on independent data in order to determine its true predictive capability 

(Reed and Marks 1999; Bishop 1996). A 10-fold cross-validation scheme was employed 

for the test phase of this study (Witten and Frank 2005). The advantage of using this 

cross-validation technique instead of other validation procedures is that more cases are 
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used in the training phase (Witten and Frank 2005). Moreover, all of the cases are 

eventually used in the testing phase. 

e. Training the neural network

Before training the network, we created two additional predictors from the 

maximum sustained surface wind speed values in HURDAT: the Saffir-Simpson scale 

rating (Simpson and Riehl 1981) and an interpolated Saffir-Simpson scale rating. The 

interpolated Saffir-Simpson scale rating was computed for each event as follows: 

where: 

Ss 
(vo -v1) 

=co+--­
(vu - Vt) 

SS interpolated Saffir-Simpson Scale rating, 

co Saffir-Simpson Scale rating of storm as reported by the NHC, 

Vo observed 1-min maximum sustained surface wind speed, 

(2.3) 

v1 low wind speed threshold for Saffir-Simpson Scale rating of storm as reported by 

the NHC (Table 2), 

vu upper wind speed threshold for that category. 

Note: The upper category 5 limit was set to 190mph because that was the fastest 

recorded maximum sustained wind speed at landfall in the dataset (Hurricane Camille, 

1969). 
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TABLE 2. Saffir-Simpson Scale thresholds 

Category Wind speed 
(mph) 

5 2:156 

4 131-155

3 111-130

2 96-110

1 74-95

The final dataset consisted of a total of four predictors
3
: Saffir-Simpson rating at

landfall, interpolated Saffir-Simpson rating at landfall, estimated central pressure at 

landfall (mb), and maximum 1-min sustained surface wind speed at landfall (m s-
1
). 

These predictors comprised the input variables for the linear regression models and the 

first layer of the NNs. There were two sets of predictand, corresponding to the two 

different normalized storm damage figures from Pielke et al. (2007). These damage 

figures comprised the output variables for the linear regression models and the final layer 

of the NNs. 

Since we identified 135 landfalling hurricane events during 1900-2005, the linear 

regression and NN models were trained on a total of 135 cases. Because of the limited 

period of record provided only 135 cases, it is possible that we did not have a sufficient 

number of representative cases to minimize overfitting. Overfitting results from having 

too little developmental data for the number of parameters tuned. Using a large number 

3 There were really only two independent predictors in total since three of the four predictors were a 
function of wind speed. But for the purposes of this paper, we used wind speed in three different forms to 

see if a different result was achieved. 
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of cases lowers the odds of obtaining coincidental relationships between the predictors 

and predictand, i.e. of overfitting. 

The Waikato Environment for Knowledge Analysis (Weka) software was used to 

construct the linear regression and NN models. The goal was to develop a system that 

could predict storm damage from one or more of the four predictors. The predictive 

capability of a network was determined from the value of R-squared. There is no 

definitive rule on how to build an optimal NN. Therefore, the training and testing 

procedure involved altering the values for the learning rate and momentum, trying 

various combinations of predictors, and varying the number of hidden layers and nodes. 

The aforementioned learning rate controls the step size and how quickly the search 

converges to the minimum of the error surface. The momentum term makes the error 

adjustment process steadier by making the weight change more persistent. The number 

of hidden layers used ranged between O and 3, and the number of nodes was generally 

maintained between 2 and 6 so that the network was not too complex for the dataset. 
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Chapter 3. BACKGROUND AND LITERATURE REVIEW 

a. Determining the trigger for a catastrophe bond

Developing an appropriate trigger for a catastrophe bond involves collaboration 

between the bond issuer and a catastrophe risk modeling firm. The three main modeling 

firms are Applied Insurance Research (AIR), Risk Management Solutions (RMS), and 

Equecat. For more information on the process of catastrophe risk modeling, refer to 

Dong et al. (1996), which describes the methodology in detail. 

A bond issuer that wants to lower its exposure to a catastrophic hurricane will 

consult a modeling firm to determine the probability that a hurricane exceeding a certain 

intensity threshold will impact a pre-determined area of coastline. In a hypothetical 

scenario, Jones Reinsurance Company has $50,000,000 worth of reinsurance exposure in 

South Florida. The firm wants to decrease the chance that it will go bankrupt in the event 

that a hurricane of category 3 or greater makes landfall in South Florida. Such an event 

would likely cause Jones Reinsurance Company to declare bankruptcy because of the 

high number of property loss insurance claims. Thus, the firm wants to issue a 

catastrophe bond that would cover half of its risk exposure. AIR uses historical hurricane 

data to estimate the annual probability that a hurricane of category 3 or greater would 

make landfall in South Florida, assuming a category 3 storm would cause damage of 

greater than $25,000,000. The modeling firm then reports the results of this analysis to 

Jones Reinsurance. Jones Reinsurance is then able to issue a bond with an interest rate 

that is commensurate with its desired risk exposure. 

Despite the error associated with the measured parameters of a hurricane, 

modeling firms and bond issuers often do not take this uncertainty into account during the 
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pricing of a catastrophe bond (personal communication, Albert Selius, Swiss Re 2006). 

The only requirement is that the language in the offering circular, the publication that 

defines the terms of the catastrophe bond, must be unambiguous (personal 

communication, Keith Crocker 2006). The offering circular must specifically state the 

methodology for determining and measuring the trigger. For many bonds, the trigger is 

based on the measured parameters of the hurricane at landfall as published in the Tropical 

Cyclone Report, a report issued by the National Hurricane Center (NHC) after the 

passage of a hurricane. This report contains the statistics of a given storm and post­

analysis best track estimates. Some offering circulars state that neither the risk modeling 

firm nor the National Weather Service (NWS) are responsible for errors that may exist in 

the hurricane parameters printed in the Tropical Cyclone Report (Grand Isle Limited 

2007, Swiss Re internal publication). 

b. Measurement methodology for the popular triggers

The process of determining storm intensity is a delicate combination of art and 

science. A lot of the final decision is based on the experience of the highly trained 

forecasters and scientists at the NHC (personal communication, Peter Black 2006). The 

NHC uses a combination of all of the available data from the various observational 

platforms in order to make a subjective decision on the intensity of a hurricane as it 

makes landfall and how much weight each instrument is given in the composite final 

decision of the storm parameters (personal communication, Richard Pasch 2006; Table 

2). For example, land-based observing systems may fail as a hurricane makes landfall, in 

which case these systems cannot be used in the final analysis. Meteorologists at the NHC 
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then have to analyze aircraft measurements made just pnor to landfall and satellite 

imagery of the landfalling storm to make an educated guess on its landfall intensity. 

The measurements from aircraft, ocean, and land-based observing systems are not 

without error, however. The NHC must take this error into account in order to make 

accurate and informed decisions on storm parameters. Modelling firms and bond issuers 

must also consider such instrumentation errors so that they can develop appropriate 

catastrophe bond triggers. 

c. Trigger error

1) Maximum sustained surface wind speed measurement error

i. GPS dropwindsonde

The NHC maximum sustained surface wind speed (i.e. 1-min maximum sustained 

wind speed at a height of 10m) estimate at landfall for a given hurricane is subject to 

error from several sources (Table 2). For example, land-based observing systems often 

fail at high wind speeds as a result of power outages or structural failure (personal 

communication, Mike Black 2006). The data from the land-based observing systems that 

do not fail is often tainted by the presence of debris (Powell et al. 2004). These obstacles 

can result in substantial differences (as much as a factor of 2) in the measured wind speed 

between stations (Powell and Reinhold 1996). When this situation occurs, meteorologists 

at the NHC have to make an educated guess on the maximum sustained surface wind 

speed at landfall based on the available data from other instruments such as low-altitude 

hurricane reconnaissance aircraft, making measurements just before landfall and satellite 

imagery of the storm as it makes landfall. Over the years, the NHC has acquired such 

measurements from a number of different aircraft, including the National Oceanic and 
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Atmospheric Administration (NOAA) WP-3Ds, the Gulfstream IV jet, the Air Force C-

130s, National Center for Atmospheric Research Electra, and a leased Lear-36. 

One of the primary means by which these reconnaissance aircraft measure the 

maximum sustained surface wind speed in a hurricane before landfall is via the Global 

Positioning System (GPS) dropwindsonde (Hock and Franklin 1999). This instrument is 

regularly deployed in the eyewall from the WP-3D and C-130 aircraft and measures the 

ambient wind speed from flight level down to the surface. The accuracy of the wind 

speed measurement is 0.5 m s- 1 (1.118 mph) over a range of 0-150 m s- 1 (335.5 mph) 

(Hock and Franklin 1999). 

The GPS dropwindsonde can be deployed in the eyewall as long as the center of 

the storm remains over the ocean, i.e. up until the moment when the storm makes 

landfall. Because the instrument provides a point measurement of wind speed, the data 

does not provide a complete representation of the pressure and wind field of the hurricane 

(Powell et al. 2004 ). Moreover, because of the turbulent flow in a hurricane, it is difficult 

to place a dropwindsonde in the location of the strongest surface winds. The actual error 

these effects introduce into the final NHC wind speed estimates has not been quantified 

to date and remains unclear (personal communication, Peter Black 2006). Resolving this 

question is challenging because both sampling and targeting issues are involved. 
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TABLE 3. Measurement methodology of the popular and potential triggers. 

Measurement metliodoloev of the popular and potential trl22ers 
"'"' 

Central pressure i. Inertial and GPS navigation systems on board the aircraft.

estimates and 1. Flight level wind reduction factor applied to measurements at

maximum sustained 
700mb.

ii. GPS Dropwindsonde
wind speed iii. Stepped Frequency Microwaves Radiometer to measure wind speed.
measurements. iv. Microwave Satellite Data and Imagery

vi. NOAA near-polar orbiting satellites
vii. Defense Meteorological Satellite Program satellite
viii. Quick SCAT Scatterometer
ix. Aqua
X. Geostationary Satellite-based Dvorak estimates by the following

agencies (used during pre-landfall period):
l. Tropical Analysis and Forecast Branch (T AFB)
2. NOAA Satellite Analysis Branch (SAB)

3. US Air Force Weather Agency (AFWA)
xi. Tail Doppler Radar

1. Plane does a corkscrew pattern through the storm as it
measures the wind profile.

2. Tail Doppler Radar will not allow you to get a direct
measurement of surface wind speed (personal communication,
John Garnache 2006)

xii. Aircraft, ASOS and Official Surface Observing Systems,
1. e.g. NWS WSR-88D velocity data
2. "Observations include data from satellites, aircraft, airborne

and ground-based radars, conventional land-based surface
and upper-air observing sites, Coastal-Marine Network (C-
MAN) stations, National Ocean Service (NOS) stations, ocean
data buoys, and ships. Selected ship reports
of winds of tropical storm force associated, and selected
surface observations from land stations and from coastal and
fixed ocean data buoys Data from many Automated Surface
Observing System (ASOS) sites (measure wind
speed over land), C-MAN stations, and buoys are used in
many cases but sometimes incomplete due to power outages
and other weather-induced failures prior to when peak winds
and minimum pressures occurred" (Source:
NHC's Tropical Cylcone Report for Hurricane Katrina).

Position estimations in 

real-time near landfall NWS WSR-88D Doppler radars based on land 

, 

I I ~ ,_ " " ..... 

1, 
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ii. Inertial and GPS navigation systems and the flight level wind reduction factor

Another primary means by which reconnaissance aircraft measure the maximum 

sustained surface wind speed in a hurricane before landfall is by inertial and GPS 

navigation systems onboard the aircraft. These aircraft generally fly radial flight-legs 

towards and away from the center of the storm at a flight level of~ 700 hPa (Kossin et al. 

2007). The wind at this altitude is measured by the inertial and GPS navigation system. 

This value is reduced by a reduction factor (R) of 0.90 to infer the 1-min maximum 

sustained wind speed at 10m. This reduction factor has a standard deviation of 0.19 

(Franklin et al. 2003). Thus, the use of flight level winds to estimate 1-minute maximum 

sustained wind speed at 10m could easily result in errors of ±20%. 

As a result, some studies have suggested that this method of extrapolating the 

maximum sustained surface wind speed from flight level wind speed using the R value is 

subject to a substantial degree of uncertainty (Dunion et al. 2003; Franklin et al. 2003; 

Powell et al 2003). Empirical evidence suggests that R varies within and between 

hurricanes, hence the large standard deviation mentioned above (Powell 2004; Franklin et 

al. 2003). R on the weaker left side of the hurricane center may be 4% higher than on the 

right side of the storm (Powell at al. 2004 ). Thus, it is necessary to know the overall 

structure of the boundary layer of a hurricane in order to determine the appropriate value 

for R and to reduce the likelihood of error in the resulting surface maximum sustained 

surface wind speed estimate. This information is often difficult to obtain (Uhlhorn et al. 

2006). Powell et al. (2004) also found that increased surface roughness near the coast 

may result in values of R smaller than 0.90, leading to overestimations of the surface 

wind speed. 
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iii. Stepped Frequency Microwave Radiometer (SFMR)

In addition to the GPS dropwindsonde and flight level wind reduction, the SFMR 

has become an operationally important wind speed measuring device during the last 

several years. For over two decades, the National Oceanic and Atmospheric 

Administration (NOAA)/Hurricane Research Division (HRD) has used the SFMR to 

measure hurricane wind speed via research aircraft (Uhlhom et al. 2006; Uhlhom and 

Black 2003). The SFMR measures wind speed along the flight path by detecting passive 

microwave emissions from the sea surface. Ulhom and Black (2003) and Black et al. 

(1995) have presented evidence that these emissions are strongly correlated with ambient 

wind speed. 

In 2005, NOAA/ Aircraft Operations Center (AOC) began to equip research 

aircraft with a next-generation SFMR (Uhlhom et al. 2006). The accuracy of this 

instrument is 2.2 m s-
1 

± 0.4% at 30 m s-
1
• This accuracy is a factor of 2 greater than the 

original research SFMR that the HRD used prior to 2005 (Uhlhom et al. 2006). 

Empirical evidence also reveals that the accuracy of the new system is comparable to the 

GFS dropwindsonde for surface wind estimates (Uhlhorn et al. 2006). One disadvantage 

of the SFMR is that it has a low bias at high wind speeds (Uhlhom and Black 2003). It 

also loses accuracy in shallow water, so it is difficult to obtain a reliable measurement for 

the wind speed at landfall (personal communication, Mike Black 2006). The data from 

the SFMR is still taken into account, however, when the NHC makes the final decision 

on the maximum sustained surface wind speed at landfall. 
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1v. Tail Doppler Radar 

Some reconnaissance aircraft also have Tail Doppler radar aboard, which can be 

operated in dual-Doppler mode. This radar measures the three-dimensional wind field of 

the inner core of a tropical cyclone. This data, however, requires a substantial amount of 

post-processing and is not available in real-time (Kossin et al. 2007). 

v. Boundary layer wind streaks

No matter which sensors are used, boundary layer wind streaks located in the core 

of a landfalling hurricane may contribute to uncertainty in the estimates of maximum 

sustained surface wind speed at landfall. Wurman and Winslow (1998) presented 

Doppler On Wheels (DOW) mobile weather radar observations of these streaks in the 

inner core of Hurricane Fran (1996). These images revealed intense, sub-kilometer scale 

horizontal boundary layer rolls that triggered alternating bands of light (15-35 m s- 1) and 

strong (40 to 60 m s-
1
) near-surface winds. These coherent, turbulent wind streaks might 

account for past observations of well-defined, small-scale linear swaths of hurricane 

damage (Wakimoto and Black 1994). 

With respect to estimates of the I-minute maximum sustained surface wind speed, 

the presence of boundary layer wind streaks in a hurricane can lead to overestimates or 

underestimates of the wind speed depending on whether the measurement device is 

located in a band of either strong or light surface winds, respectively. For example, a 

GPS dropwindsonde deployed into a band of light winds might not yield a measurement 

that truly reflects the upper limit of the wind damage capability of a given storm. This 

source of wind speed error combined with the other sources previously discussed has led 
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risk modeling firms and reinsurers to incorporate central barometric pressure into 

catastrophe bond issues. 

2) Minimum central barometric pressure measurement error

As with wind speed estimates, observations of the minimum central barometric 

pressure at landfall are subject to measurement uncertainty. The GPS dropwindsonde is 

the most common means of measuring the barometric pressure in hurricanes. Because 

dropwindsondes cannot be dropped over land, estimates of the landfall barometric 

pressure are derived from GPS dropwindsonde measurements taken just prior to landfall. 

The error in the pressure sensor on the GPS dropwindsonde is only ±1 hPa (Hock and 

Franklin 1999). There is also error, however, stemming from the difficulty of deploying 

the GPS dropwindsonde in the exact location of the minimum surface barometric 

pressure. Although this error is difficult to quantify, the lower reliability of land based 

observing systems during landfalling hurricane events means that the GPS 

dropwindsonde is the best device a vai !able for estimating central pressure. (personal 

communication, Peter Black, 2006). 

Another targeting issue is that the dropwindsonde can blow into mesovortices 

embedded within the hurricane eye and eyewall, yielding an unrepresentative surface 

pressure reading. These, small-scale regions of vorticity can result in a lower measured 

pressure reading. These features have been well documented in the literature (Kossin and 

Eastin 2001; Black and Marks 1991; Marks and Black 1990; Bluestein and Marks 1987) 

but there frequency is not well known. 
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3) Error in the Historical Hurricane Database (HURDAT)

The catastrophe risk modeling firms that help the reinsurance company develop 

appropriate triggers for a catastrophe bond use historical hurricane data from the NHC 

Historical Hurricane Database (HURDAT). The uncertainty in this data is an additional 

source of error that must be considered in the development of a robust trigger for a 

catastrophe bond. The error of the barometric pressure and surface wind speed estimates 

in the HURD AT database is likely higher in earlier years because of the lower number of 

measurements taken for each storm and the evolution of the available sensor systems. 

Before the 1960s, there were often long periods of time, sometimes days, in which no 

measurements were taken of a particular hurricane. Also, the early reconnaissance 

aircraft rarely penetrated the eyewall, making it difficult to obtain measurements of 

intense hurricanes (personal communication, Chris Landsea 2006). Hurricane Carol 

(1954), for example, lasted ten days and made landfall on the east coast of the United 

States, yet only seven measurements of the storm were taken while it was of hurricane 

strength. For four days, the storm was spinning off the coast of Georgia without 

measurements being taken, so meteorologists would have had no idea about its intensity 

(personal communication, Chris Landsea 2006). 
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Chapter 4. RES UL TS 

Fig. 2 and Table 3 reveal that there is little to no linear relationship between the 

Saffir-Simpson Scale rating for a given landfalling hurricane and the associated storm 

damage. The results also indicate that the minimum central pressure and the maximum 

sustained surface wind speed at landfall are poor indicators of the amount of damage 

realized from a given hurricane (Table 3; Figs. 3 and 4). Using different combinations of 

predictors and performing linear regression against damage did not yield better results as 

evident from the low R
2 

values in Table 3. Moreover, Fig. 4 shows that significance did 

not improve when the normalized damage figures were conditione on minimum central 

pressure values less than 960 hPa. 

Neural networks did not perform substantially better than linear regression (Table 

3). Numerous combinations of predictors and parameter settings were employed. Ten 

different random seeds were used, and 10 runs were generated in Weka for each random 

seed. The highest value for R
2 

attained using a neural network was 0.125. Thus, the 

results illustrate that parametric triggers alone are "insufficient" for effective use in a 

catastrophe bond. 
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TABLE 4. Twenty-five representative models runs using the Weka software program 

25 Representative Weka Runs 

Run Algorithm Parameter Settings Attributes4 Correlation 
R2 

Coefficient 

max_ wind_speed_mph, 

1 Linear Regression Default 
pressure, saffir_simpson, 

0.31 0.096 
interpol_saffir_simpson, 

normalized_pl05 

2 Linear Regression Default 
max_ wind_speed_mph, 

0.3239 0.105 
normalized_pl05 

3 Linear Regression Default pressure, normalized_pl05 0.3564 0.127 

4 Linear Regression Default 
saffir _simpson, 

0.3342 0.112 
normalized_p105 

5 Linear Regression Default 
interpol_saffir_simpson, 

0.315 0.099 
normalized_p105 

max_ wind_speed_mph, 

6 Least Median Squares Default 
pressure, saffir_simpson, 

0.4085 0.167 
interpol_saffir _simpson, 

normalized_pl05 

- max_ wind_speed_mph, 

7 MultilayerPerceptron Default 
pressure, saffir _simpson, 

0.3217 0.103 
interpol_saffir _simpson, 

normalized_p105 

Changed the max_ wind_speed_mph, 

8 Mui tilayerPerceptron epochs to 10000. pressure, saffir_simpson, 0.0809 0.007 Did not change interpol_saffir _simpson, 
anything else. normalized_p105 

Changed hidden 
max_ wind_speed_mph, 

nodes to 3,3,3. 
9 Mui tilayer Perceptron (i.e. Three layers 

pressure, saffir_simpson, 
0.3536 0.125 

with three nodes 
interpol_saffir _simpson, 

per layer.) 
normalized_pl05 

10 Mui tilayer Perceptron Default max_ wind_speed_mph, 0.2409 0.058 
pressure, normalized_p105 

4 Note: While there are redundancies in the attributes because more than one attribute is a direct function 
of wind speed, each attribute provides slightly different levels of information. For example, the dataset is 
grouped into fewer categories when grouped by saffir _simpson instead of max_ wind_speed_mph because 
saffir_simpson can only be one of five values while max_ wind_speed can be many more than five. This 
variability in the level of detail is what distinguishes each attribute that is a function of wind speed. 
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Changed hidden 
max_ wind_speed_mph, 

11 MultilayerPerceptron layers parameter to 0.093 0.009 
6,4,2. 

pressure, normalized_pl05 

Changed hidden 
max_ wind_speed_mph, 

12 MultilayerPerceptron layers parameter to 0.317 0.100 
3. 

pressure, normalized_pl05 

13 Mui tilayerPerceptron 
Changed hidden max_ wind_speed_mph, 

0.093 0.009 
nodes to 6,4,2. pressure, normalized_pl05 

Changed learning 
max_ wind_speed_mph, 

14 MultilayerPerceptron rate to 0.6 and 0.2339 0.055 
momentum to 0.4 

pressure, normalized_pl05 

Changed hidden 
year, max_ wind_speed_mph, 

15 MultilayerPerceptron layers parameter to 
pressure, saffir_simpson, 

0.3252 0.106 
3,3,3. 

interpol_saffir _simpson, 
normalized_pl05 

Changed hidden year, max_ wind_speed_mph, 

16 MultilayerPerceptron 
layers parameter to pressure, saffir_simpson, 

0.2602 0.068 
3,3,3. Changed interpol_saffir _simpson, 
epochs to 1000 normalized_pl05 

Changed hidden year, max_ wind_speed_mph, 

17 Mui tilayerPerceptron 
layers parameter to pressure, saffir_simpson, 

0.3062 0.094 
3,3,3. Changed interpol_saffir_simpson, 

momentum to 0.1 normalized_pl05 

Changed hidden year, max_ wind_speed_mph, 

18 Mui tilayer Perceptron 
layers parameter to pressure, saffir_simpson, 

0.2955 0.087 
3,3,3. Changed in terpol_saffir _simpson, 

learning rate to 0.2 normalized_pl05 

Changed hidden 
year, max_ wind_speed_mph, 

19 MultilayerPerceptron layers parameter to 
pressure, saffir_simpson, 

0.1804 0.033 
2. 

in terpol_saffir _simpson, 
normalized_pl05 

Changed hidden 
year, max_ wind_speed_mph, 

20 Mui tilayerPerceptron layers parameter to 
pressure, saffir_simpson, 

0.2375 0.056 
10. 

in terpol_saffir _simpson, 
normalized_pl05 

Legend: Multilayer Perceptron=NeuraI network application in Weka, Default=Weka's default settings, 
max_wind_speed_mph=Maximum sustained surface wind speed at landfall, pressure=CentraI pressure at 
landfall, saffir _simpson=Saffir-Simpson scale rating at landfall, interpol_saffir _simpson=lnterpoiated 
Saffir-Simpson scale rating, normalized_pl05=Normalized damage using the Pielke and Landsea (1998) 

methodology. 
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Chapter 5. DISCUSSION 

The analysis in this study suggests that single hurricane parameters such as 

minimum central pressure and the maximum sustained surface wind speed at landfall are 

poor predictors of the amount of storm damage. Combinations of hurricane parameters 

yielded similarly poor results. Thus, it will be necessary to include other parameters in 

order to achieve accurate hurricane damage models and more effective catastrophe bond 

triggers. Hurricane parameters that might considered for inclusion in catastrophe bond 

issues are flooding from rainfall, storm surge, radius of gale force winds, radius of 

maximum winds, topography, location of landfall, and angle of incidence. Societal 

parameters include population, wealth, and their distribution with altitude. An analysis of 

the relationship between these parameters and the storm damage is a future area of study, 

as is the distinction between wind damage and that due to flooding, a critical factor for 

the insurance industry. 

The results presented here suggest that bond issuers should use modeled-loss
5 

type bonds instead of bonds based on parametric triggers, which are subject to substantial 

measurement uncertainty. In order to test the robustness and validity of a given model, a 

bond issuer or risk modeling firm would use a similar procedure to the one employed in 

this study. The firm would first input parameters from past landfalling hurricanes into 

the model and generate corresponding damage estimates for each storm. These damage 

estimates would then be compared to the actual damage figures derived from either the 

Pielke and Landsea (1998) or Collins and Lowe (2001) methodologies in which storm 

damage was normalized for changes in inflation and wealth at the national level and 

changes in population and housing units at the coastal county level.. The firm could then 

5 
See Table 1 for a definition of modeled-loss type bonds. 

------·- ··- · ·-·· ------
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examme how well the model would have performed on past landfalling hurricanes. 

Models that produce damage estimates similar to the actual normalized damage figures 

would be considered reasonably robust. 

For an alternative assessment of the impact between measurable hurricane 

parameters and the insurance and reinsurance industry, insured losses could be used in 

place of normalized storm damage in a future study. Since insurance companies cover 

damages resulting from wind but not floods, it is possible that the maximum sustained 

surface wind speed and minimum central pressure are better correlated with insured 

losses than normalized storm damage. 
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